搜尋
首頁後端開發Python教學快速入門pandas庫常用函數指南

快速入門pandas庫常用函數指南

pandas庫是Python中常用的資料處理和分析工具,它提供了豐富的函數和方法,能夠輕鬆地完成資料導入、清洗、處理、分析和視覺化等工作。本文將介紹pandas函式庫常用函數的快速入門指南,並附帶具體的程式碼範例。

  1. 資料導入
    pandas函式庫透過read_csv、read_excel等函式可以方便地匯入各種格式的資料檔。以下是一個範例程式碼:
import pandas as pd

# 从csv文件中导入数据
data = pd.read_csv('data.csv')

# 从excel文件中导入数据
data = pd.read_excel('data.xlsx')
  1. 資料檢視
    pandas函式庫提供了head、tail等函數來查看資料的前幾行和後幾行。以下是一個範例程式碼:
# 查看数据的前5行
print(data.head())

# 查看数据的后5行
print(data.tail())
  1. 資料清洗
    pandas函式庫提供了dropna、fillna等函數來處理缺失值,以及replace等函數來取代特定的值。以下是一個範例程式碼:
# 删除含有缺失值的行
data = data.dropna()

# 使用均值填充缺失值
data = data.fillna(data.mean())

# 将特定的值替换为其他值
data['column_name'] = data['column_name'].replace('old_value', 'new_value')
  1. 資料切片和篩選
    pandas函式庫透過iloc、loc等函數實作資料的切片和篩選。以下是一個範例程式碼:
# 使用位置索引切片
subset = data.iloc[1:10, 2:5]

# 使用标签索引切片
subset = data.loc[data['column_name'] == 'value']

# 使用条件筛选
subset = data[data['column_name'] > 10]
  1. 資料排序和排名
    pandas函式庫提供了sort_values、sort_index等函數實現資料的排序和排名操作。以下是一個範例程式碼:
# 按列进行排序
data = data.sort_values('column_name')

# 按索引进行排序
data = data.sort_index()

# 对列进行排名
data['column_rank'] = data['column_name'].rank()
  1. 資料聚合和計算
    pandas函式庫提供了groupby、agg等函數實作資料的聚合和計算。以下是一個範例程式碼:
# 对列进行聚合操作
grouped_data = data.groupby('column_name').sum()

# 对多列进行聚合操作
grouped_data = data.groupby(['column_name1', 'column_name2']).mean()

# 对列进行自定义的聚合操作
aggregated_data = data.groupby('column_name').agg({'column_name': 'mean', 'column_name2': 'sum'})
  1. 資料視覺化
    pandas函式庫提供了plot函數實作資料的視覺化。以下是一個範例程式碼:
# 绘制折线图
data.plot(x='column_name', y='column_name2', kind='line')

# 绘制散点图
data.plot(x='column_name', y='column_name2', kind='scatter')

# 绘制柱状图
data.plot(x='column_name', y='column_name2', kind='bar')

本文簡要介紹了pandas函式庫常用的幾個函數,以及對應的具體程式碼範例。透過學習和掌握這些函數的用法,可以讓我們更有效率地處理和分析資料。當然,pandas庫還有更多強大的功能等著大家去發掘和應用。如果對pandas庫的進一步學習感興趣,可以查看官方文件或相關的教程和範例程式碼。

以上是快速入門pandas庫常用函數指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能