搜尋
首頁科技週邊人工智慧大模型知識圖嵌入

大模型知識圖嵌入

大模型知識圖嵌入是通过深度学习模型将知识图中的实体和关系表示为低维连续的空间,这样可以方便计算实体之间的相似性、关系的强度以及进行其他推理任务。知识图嵌入的目标是将知识图中的实体和关系映射到连续的支撑空间,以便更好地表示它们的特征。这种嵌入技术能够提供更有效的知识表示和处理方式,从而为知识图的应用提供更好的基础。

大模型知識圖嵌入的应用

大模型知識圖嵌入广泛应用于推荐、自然语言处理、信息检索和图谱分析等领域。

1.推荐系统

知识图嵌入被广泛应用于推荐系统,以提高推荐的准确性和个性化程度。通过将用户、物品和行为交互嵌入到空间中,推荐系统能更好地理解它们之间的关系。这种方法能够更好地吸引用户的兴趣并捕捉物品的特征,从而实现更加智能和精准的个性化推荐。知识图嵌入的优势在于能够将用户和物品的属性以及它们之间的关联关系转化为低维向量表示。这样,系统可以通过计算向量之间的相似度来推荐与用户兴趣相匹配的物品。通过利用知识图嵌入的技术,推荐系统能够更好地理解用户的需求,提高推荐效果,从而为用户提供更好的个性化体

2.自然语言处理

知识图嵌入在自然语言处理任务中的应用可以增强语言模型的语义理解能力。通过将实体和嵌入关系映射到支持空间,模型能够更好地理解文本中实体及其关系,从而提高实体识别、关系抽取以及问答系统等任务的效果。

3.信息检索

知识图嵌入在信息搜索领域得到了广泛的评估,它有助于系统更好地理解查询和文档之间的语义关联,从而提高搜索结果的相关性。通过将查询、文档和知识图像的实体嵌入到支持空间中,系统可以更好地简化它们之间的语义相似度,从而提高信息检索的效果。这种方法能够在搜索过程中更好地利用语义信息,从而提供更准确和有用的搜索结果。

4.图谱分析

在知识图谱分析方面,知识图嵌入对于系统进行知识推理和分析起着重要的作用。它能够揭示隐藏在图谱中的模式、规则和规律,识别实体之间的复杂关系,并支持路径推理、实体分类、链接预测等任务,从而提高知识图谱的质量和可用性。通过将实体和关系映射到低维空间中的向量表示,知识图嵌入可以捕捉到实体之间的语义关联,使得系统能够更好地理解和利用知识图谱中的信息。此外,知识图嵌入还可以用于发现实体之间的相似性和关联性,为推荐系统、搜索引擎等提供有力支持。综上所述,知识图嵌入在知

5.其他领域

除了在领域外的应用,知识图嵌入还在语义匹配、知识图谱补全、关系抽取、命名实体识别等任务中发挥了重要的作用。在医疗、金融、电商等行业中,它也被广泛应用,帮助企业和组织更好地利用大量的知识图谱数据,提高决策能力、优化流程和改善用户体验。

知识图嵌入原理

1.知识图表示

三元组可以表示为((h,r,t)),其中(h)为头实体,(r)为关系,(t)为尾实体。例如,((Tom Hanks,acted_in,Forrest Gump))表示汤姆·汉克斯参与了《阿甘正传》。

2.负采样

在训练知识图嵌入模型时,通常需要使用负采样,这可以帮助模型区分正例(真实三元组)和负例(伪造三元组)。通过对比这两类样本,模型可以学习到将它们正确分开的能力。

3.TransE模型

TransE是一种常用的知识图嵌入模型,其基本思想相当于实体和关系都映射到支持空间中。对于每个三元组((h,r,t)),TransE通过以下最小化公式进行训练:

[\sum_{(h,r,t)\in S}\sum_{(h',r,t>对于每个三元组((h,r,t))

TransE通过最小化以下公式进行训练:

[\sum_{(h,r,t)\in S}\sum_{(h',r,t')\in S'}[\gamma+d(h+r,t')-d(h,t)]_+]

其中,(S)是正例三元组集合,(S')是由(S)生成的负例三元组集合,(d)表示距离函数,通常使用(L1)范数或(L2)范数,[x]_+]表示取正数部分,(\gamma)是一个边界参数。

TransE假設三元組中的頭實體與關係的組合求解加上關係式求解近似等效尾實體的求解(即(h r\approx t))。透過優化上述損失函數,模型學習將和實體關係映射到提供空間中的方式,以便最大限度地滿足這一設想。

範例

以簡單的知識圖為例,包含實體「湯姆·漢克斯」、「acted_in」和關係實體「阿甘正傳」。我們假設實體和映射到二維服務空間。

1.初始化指示:假設"Tom Hanks"的支撐表示為([0.2,0.5]),"Forrest Gump"的支撐表示為([0.4,0.3]),"acted_in"的支撐表示為([0.1,0.6])。

2.計算損失:對於正例((Tom Hanks,acted_in,Forrest Gump)),我們計算(h r)和(t)的距離。如果距離大於邊界參數(\gamma),則計算損失。

3.更新預警:根據損失,我們更新("Tom Hanks")、("Forrest Gump")和("acted_in")的預警,使它們更好地滿足(h r\approx t)的條件。

4.迭代訓練:重複上述步驟,直到模型收斂。

透過這樣的訓練過程,模型學習到如何將實體和關係映射到一個低維的儲存空間,以便於在儲存空間中進行知識圖的推理和分析。

以上是大模型知識圖嵌入的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:网易伏羲。如有侵權,請聯絡admin@php.cn刪除
烹飪創新:人工智能如何改變食品服務烹飪創新:人工智能如何改變食品服務Apr 12, 2025 pm 12:09 PM

AI增強食物準備 在新生的使用中,AI系統越來越多地用於食品製備中。 AI驅動的機器人在廚房中用於自動化食物準備任務,例如翻轉漢堡,製作披薩或組裝SA

Python名稱空間和可變範圍的綜合指南Python名稱空間和可變範圍的綜合指南Apr 12, 2025 pm 12:00 PM

介紹 了解Python函數中變量的名稱空間,範圍和行為對於有效編寫和避免運行時錯誤或異常至關重要。在本文中,我們將研究各種ASP

視覺語言模型(VLMS)的綜合指南視覺語言模型(VLMS)的綜合指南Apr 12, 2025 am 11:58 AM

介紹 想像一下,穿過​​美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容Apr 12, 2025 am 11:52 AM

繼續使用產品節奏,本月,Mediatek發表了一系列公告,包括新的Kompanio Ultra和Dimenty 9400。這些產品填補了Mediatek業務中更傳統的部分,其中包括智能手機的芯片

本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢Apr 12, 2025 am 11:51 AM

#1 Google推出了Agent2Agent 故事:現在是星期一早上。作為AI驅動的招聘人員,您更聰明,而不是更努力。您在手機上登錄公司的儀表板。它告訴您三個關鍵角色已被採購,審查和計劃的FO

生成的AI遇到心理摩托車生成的AI遇到心理摩托車Apr 12, 2025 am 11:50 AM

我猜你一定是。 我們似乎都知道,心理障礙由各種chat不休,這些chat不休,這些chat不休,混合了各種心理術語,並且常常是難以理解的或完全荒謬的。您需要做的一切才能噴出fo

原型:科學家將紙變成塑料原型:科學家將紙變成塑料Apr 12, 2025 am 11:49 AM

根據本週發表的一項新研究,只有在2022年製造的塑料中,只有9.5%的塑料是由回收材料製成的。同時,塑料在垃圾填埋場和生態系統中繼續堆積。 但是有幫助。一支恩金團隊

AI分析師的崛起:為什麼這可能是AI革命中最重要的工作AI分析師的崛起:為什麼這可能是AI革命中最重要的工作Apr 12, 2025 am 11:41 AM

我最近與領先的企業分析平台Alteryx首席執行官安迪·麥克米倫(Andy Macmillan)的對話強調了這一在AI革命中的關鍵但不足的作用。正如Macmillan所解釋的那樣,原始業務數據與AI-Ready Informat之間的差距

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版