搜尋
首頁資料庫mysql教程Parallel Query for MySQL with Shard-Query_MySQL

While Shard-Query can work over multiple nodes, this blog post focuses on using Shard-Query with a single node.  Shard-Query can add parallelism to queries which use partitionedtables.  Very large tables can often be partitioned fairly easily. Shard-Query can leverage partitioning to add paralellism, because each partition can be queried independently. Because MySQL 5.6 supports the partition hint, Shard-Query can add parallelism to any partitioning method (even subpartioning) on 5.6 but it is limited to RANGE/LIST partitioning methods on early versions.

The output from Shard-Query is from the commandline client, but you can use MySQL proxy to communicate with Shard-Query too.

In the examples I am going to use the schema from the Star Schema Benchmark.  I generated data for scale factor 10, which means about 6GB of data in the largest table. I am going to show a few different queries, and explain how Shard-Query executes them in parallel.

Here is the DDL for the lineorder table, which I will use for the demo queries:

CREATE TABLE IF NOT EXISTS lineorder( LO_OrderKey bigint not null, LO_LineNumber tinyint not null, LO_CustKey int not null, LO_PartKey int not null, LO_SuppKey int not null, LO_OrderDateKey int not null, LO_OrderPriority varchar(15), LO_ShipPriority char(1), LO_Quantity tinyint, LO_ExtendedPrice decimal, LO_OrdTotalPrice decimal, LO_Discount decimal, LO_Revenue decimal, LO_SupplyCost decimal, LO_Tax tinyint, LO_CommitDateKey int not null, LO_ShipMode varchar(10), primary key(LO_OrderDateKey,LO_PartKey,LO_SuppKey,LO_Custkey,LO_OrderKey,LO_LineNumber)) PARTITION BY HASH(LO_OrderDateKey) PARTITIONS 8;

CREATETABLEIFNOTEXISTSlineorder

(

LO_OrderKeybigintnotnull,

LO_LineNumbertinyintnotnull,

LO_CustKeyintnotnull,

LO_PartKeyintnotnull,

LO_SuppKeyintnotnull,

LO_OrderDateKeyintnotnull,

LO_OrderPriorityvarchar(15),

LO_ShipPrioritychar(1),

LO_Quantitytinyint,

LO_ExtendedPricedecimal,

LO_OrdTotalPricedecimal,

LO_Discountdecimal,

LO_Revenuedecimal,

LO_SupplyCostdecimal,

LO_Taxtinyint,

LO_CommitDateKeyintnotnull,

LO_ShipModevarchar(10),

primarykey(LO_OrderDateKey,LO_PartKey,LO_SuppKey,LO_Custkey,LO_OrderKey,LO_LineNumber)

)PARTITIONBYHASH(LO_OrderDateKey)PARTITIONS8;

Notice that the lineorder table is partitioned by HASH(LO_OrderDateKey) into 8 partitions.  I used 8 partitions and my test box has 4 cores. It does not hurt to have more partitions than cores. A number of partitions that is two or three times the number of cores generally works best because it keeps each partition small, and smaller partitions are faster to scan. If you have a very large table, a larger number of partitions may be acceptable. Shard-Query will submit a query to Gearman for each partition, and the number of Gearman workers controls the parallelism.

The SQL for the first demo is:

SELECT COUNT(DISTINCT LO_OrderDateKey) FROM lineorder;

SELECTCOUNT(DISTINCTLO_OrderDateKey)FROMlineorder;

Here is the explain from regular MySQL:

mysql> explain select count(distinct LO_OrderDateKey) from lineorder/G*************************** 1. row *************************** id: 1select_type: SIMPLEtable: lineorder type: indexpossible_keys: PRIMARYkey: PRIMARYkey_len: 25ref: NULL rows: 58922188Extra: Using index1 row in set (0.00 sec)

mysql>explainselectcount(distinctLO_OrderDateKey)fromlineorder/G

***************************1.row***************************

          id:1

  select_type:SIMPLE

        table:lineorder

        type:index

possible_keys:PRIMARY

          key:PRIMARY

      key_len:25

          ref:NULL

        rows:58922188

        Extra:Usingindex

1rowinset(0.00sec)

So it is basically a full table scan. It takes a long time:

mysql> select count(distinct LO_OrderDateKey) from lineorder;+---------------------------------+| count(distinct LO_OrderDateKey) |+---------------------------------+|2406 |+---------------------------------+1 row in set (4 min 48.63 sec)

mysql>selectcount(distinctLO_OrderDateKey)fromlineorder;

+---------------------------------+

|count(distinctLO_OrderDateKey)|

+---------------------------------+

|                            2406|

+---------------------------------+

1rowinset(4min48.63sec)

Shard-Query executes this query differently from MySQL. It sends a query to each partition, in parallel like the following queries:

Array([0] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p0)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[1] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p1)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[2] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p2)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[3] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p3)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[4] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p4)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[5] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p5)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[6] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p6)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey[7] => SELECT LO_OrderDateKey AS expr_2839651562FROM lineorderPARTITION(p7)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey)
Array(

    [0]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p0)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [1]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p1)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [2]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p2)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [3]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p3)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [4]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p4)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [5]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p5)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [6]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p6)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    [7]=>SELECTLO_OrderDateKeyASexpr_2839651562

FROMlineorder  PARTITION(p7)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

)

You will notice that there is one query for each partition.  Those queries will be sent to Gearman and executed in parallel by as many Gearman workers as possible (in this case 4.)  The output of the queries go into a coordinator table, and then another query does a final aggregation.  That query looks like this:

SELECT COUNT(distinct expr_2839651562) AS `count`FROM `aggregation_tmp_73522490`

SELECTCOUNT(distinctexpr_2839651562)AS`count`

FROM`aggregation_tmp_73522490`

The Shard-Query time:

select count(distinct LO_OrderDateKey) from lineorder;Array([count ] => 2406)1 rows returnedExec time: 0.10923719406128

selectcount(distinctLO_OrderDateKey)fromlineorder;

Array(

    [count]=>2406

)1rowsreturned

Exectime:0.10923719406128

That isn’t a typo, it really issub-secondcompared tominutesin regular MySQL.

This is because Shard-Query usesGROUP BYto answer this query and a loose index scanof the PRIMARY KEY is possible:

mysql> explain partitions SELECT LO_OrderDateKey AS expr_2839651562-> FROM lineorderPARTITION(p7)AS `lineorder` WHERE 1=1AND 1=1GROUP BY LO_OrderDateKey-> /G*************************** 1. row *************************** id: 1select_type: SIMPLEtable: lineorder partitions: p7 type: rangepossible_keys: PRIMARYkey: PRIMARYkey_len: 4ref: NULL rows: 80108Extra: Using index for group-by1 row in set (0.00 sec)

mysql>explainpartitionsSELECTLO_OrderDateKeyASexpr_2839651562

    ->FROMlineorder  PARTITION(p7)  AS`lineorder`  WHERE1=1  AND1=1  GROUPBYLO_OrderDateKey

    ->/G

***************************1.row***************************

          id:1

  select_type:SIMPLE

        table:lineorder

  partitions:p7

        type:range

possible_keys:PRIMARY

          key:PRIMARY

      key_len:4

          ref:NULL

        rows:80108

        Extra:Usingindexforgroup-by

1rowinset(0.00sec)

Next another simple query will be tested, first on regular MySQL:

mysql> select count(*) from lineorder;+----------+| count(*) |+----------+| 59986052 |+----------+1 row in set (4 min 8.70 sec)

mysql>selectcount(*)fromlineorder;

+----------+|count(*)|+----------+|59986052|+----------+

1rowinset(4min8.70sec)

Again, the EXPLAIN shows a full table scan:

mysql> explain select count(*) from lineorder/G*************************** 1. row *************************** id: 1select_type: SIMPLEtable: lineorder type: indexpossible_keys: NULLkey: PRIMARYkey_len: 25ref: NULL rows: 58922188Extra: Using index1 row in set (0.00 sec)

mysql>explainselectcount(*)fromlineorder/G

***************************1.row***************************

          id:1

  select_type:SIMPLE

        table:lineorder

        type:index

possible_keys:NULL

          key:PRIMARY

      key_len:25

          ref:NULL

        rows:58922188

        Extra:Usingindex

1rowinset(0.00sec)

Now, Shard-Query can’t do anything special to speed up this query, except to execute it in parallel, similar to the first query:

[0] => SELECT COUNT(*) AS expr_3190753946FROM lineorder PARTITION(p0) AS `lineorder` WHERE 1=1 AND 1=1[1] => SELECT COUNT(*) AS expr_3190753946FROM lineorder PARTITION(p1) AS `lineorder` WHERE 1=1 AND 1=1[2] => SELECT COUNT(*) AS expr_3190753946FROM lineorder PARTITION(p2) AS `lineorder` WHERE 1=1 AND 1=1[3] => SELECT COUNT(*) AS expr_3190753946FROM lineorder PARTITION(p3) AS `lineorder` WHERE 1=1 AND 1=1...

[0]=>SELECTCOUNT(*)ASexpr_3190753946

FROMlineorderPARTITION(p0)AS`lineorder`WHERE1=1AND1=1

[1]=>SELECTCOUNT(*)ASexpr_3190753946

FROMlineorderPARTITION(p1)AS`lineorder`WHERE1=1AND1=1

[2]=>SELECTCOUNT(*)ASexpr_3190753946

FROMlineorderPARTITION(p2)AS`lineorder`WHERE1=1AND1=1

[3]=>SELECTCOUNT(*)ASexpr_3190753946

FROMlineorderPARTITION(p3)AS`lineorder`WHERE1=1AND1=1

...

The aggregation SQL is similar, but this time the aggregate function is changed to SUM to combine the COUNT from each partition:

SELECT SUM(expr_3190753946) AS ` count `FROM `aggregation_tmp_51969525`

SELECTSUM(expr_3190753946)AS`count`

FROM`aggregation_tmp_51969525`

And the query is quite a bit faster at 140.24 second compared with MySQL’s 248.7 second result:

Array([count ] => 59986052)1 rows returnedExec time: 140.24419403076
Array(

[count]=>59986052

)1rowsreturned

Exectime:140.24419403076

Finally, I want to look at a more complex query that uses joins and aggregation.

mysql> explain select d_year, c_nation,sum(lo_revenue - lo_supplycost) as profitfrom lineorderjoin dim_dateon lo_orderdatekey = d_datekeyjoin customeron lo_custkey = c_customerkeyjoin supplieron lo_suppkey = s_suppkeyjoin parton lo_partkey = p_partkeywherec_region = 'AMERICA'and s_region = 'AMERICA'and (p_mfgr = 'MFGR#1'or p_mfgr = 'MFGR#2')group by d_year, c_nationorder by d_year, c_nation;+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+| id | select_type | table | type | possible_keys | key | key_len | ref| rows | Extra |+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+|1 | SIMPLE| dim_date| ALL| PRIMARY | NULL| NULL| NULL |5 | Using temporary; Using filesort ||1 | SIMPLE| lineorder | ref| PRIMARY | PRIMARY | 4 | ssb.dim_date.D_DateKey | 89 | NULL||1 | SIMPLE| supplier| eq_ref | PRIMARY | PRIMARY | 4 | ssb.lineorder.LO_SuppKey |1 | Using where ||1 | SIMPLE| customer| eq_ref | PRIMARY | PRIMARY | 4 | ssb.lineorder.LO_CustKey |1 | Using where ||1 | SIMPLE| part| eq_ref | PRIMARY | PRIMARY | 4 | ssb.lineorder.LO_PartKey |1 | Using where |+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+5 rows in set (0.01 sec)

mysql>explainselectd_year,c_nation,  sum(lo_revenue-lo_supplycost)asprofit  fromlineorder  

joindim_date  onlo_orderdatekey=d_datekey  

joincustomer  onlo_custkey=c_customerkey  

joinsupplier  onlo_suppkey=s_suppkey  

joinpart  onlo_partkey=p_partkey  

where  c_region='AMERICA'  ands_region='AMERICA'  

and(p_mfgr='MFGR#1'  orp_mfgr='MFGR#2')  

groupbyd_year,c_nation  orderbyd_year,c_nation;

+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+

|id|select_type|table    |type  |possible_keys|key    |key_len|ref                      |rows|Extra                          |

+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+

|  1|SIMPLE      |dim_date  |ALL    |PRIMARY      |NULL    |NULL    |NULL                    |    5|Usingtemporary;Usingfilesort|

|  1|SIMPLE      |lineorder|ref    |PRIMARY      |PRIMARY|4      |ssb.dim_date.D_DateKey  |  89|NULL                            |

|  1|SIMPLE      |supplier  |eq_ref|PRIMARY      |PRIMARY|4      |ssb.lineorder.LO_SuppKey|    1|Usingwhere                    |

|  1|SIMPLE      |customer  |eq_ref|PRIMARY      |PRIMARY|4      |ssb.lineorder.LO_CustKey|    1|Usingwhere                    |

|  1|SIMPLE      |part      |eq_ref|PRIMARY      |PRIMARY|4      |ssb.lineorder.LO_PartKey|    1|Usingwhere                    |

+----+-------------+-----------+--------+---------------+---------+---------+--------------------------+------+---------------------------------+

5rowsinset(0.01sec)

Here is the query on regular MySQL:

mysql> select d_year, c_nation,sum(lo_revenue - lo_supplycost) as profitfrom lineorderjoin dim_dateon lo_orderdatekey = d_datekeyjoin customeron lo_custkey = c_customerkeyjoin supplieron lo_suppkey = s_suppkeyjoin parton lo_partkey = p_partkeywherec_region = 'AMERICA'and s_region = 'AMERICA'and (p_mfgr = 'MFGR#1'or p_mfgr = 'MFGR#2')group by d_year, c_nationorder by d_year, c_nation;+--------+---------------+--------------+| d_year | c_nation| profit |+--------+---------------+--------------+| 1992 | ARGENTINA | 102741829748 |...| 1998 | UNITED STATES |61345891337 |+--------+---------------+--------------+35 rows in set (11 min 56.79 sec)

mysql>selectd_year,c_nation,  sum(lo_revenue-lo_supplycost)asprofit  fromlineorder  joindim_date  onlo_orderdatekey=d_datekey  joincustomer  onlo_custkey=c_customerkey  joinsupplier  onlo_suppkey=s_suppkey  joinpart  onlo_partkey=p_partkey  where  c_region='AMERICA'  ands_region='AMERICA'  and(p_mfgr='MFGR#1'  orp_mfgr='MFGR#2')  groupbyd_year,c_nation  orderbyd_year,c_nation;

+--------+---------------+--------------+

|d_year|c_nation      |profit      |

+--------+---------------+--------------+

|  1992|ARGENTINA    |102741829748|

...

|  1998|UNITEDSTATES|  61345891337|

+--------+---------------+--------------+

35rowsinset(11min56.79sec)

Again, Shard-Query splits up the query to run over each partition (I won’t bore you with the details) and it executes the query faster than MySQL, in 343.3 second compared to ~720:

Array([d_year] => 1998[c_nation] => UNITED STATES[profit] => 61345891337)35 rows returnedExec time: 343.29854893684
Array(

    [d_year]=>1998

    [c_nation]=>UNITEDSTATES

    [profit]=>61345891337

)35rowsreturned

Exectime:343.29854893684

I hope you see how using Shard-Query can speed up queries without using sharding, on just a single server. All you really need to do is add partitioning.

You can get Shard-Query from GitHub at http://github.com/greenlion/swanhart-tools

Please note: Configure and install Shard-Query as normal, but simply use one node and set thecolumnoption (the shard column) to “nocolumn” or false, because you are not required to use a shard column if you are not sharding.

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
mysql無法打開共享庫怎麼解決mysql無法打開共享庫怎麼解決Mar 04, 2025 pm 04:01 PM

本文介紹了MySQL的“無法打開共享庫”錯誤。 該問題源於MySQL無法找到必要的共享庫(.SO/.DLL文件)。解決方案涉及通過系統軟件包M驗證庫安裝

減少在Docker中使用MySQL內存的使用減少在Docker中使用MySQL內存的使用Mar 04, 2025 pm 03:52 PM

本文探討了Docker中的優化MySQL內存使用量。 它討論了監視技術(Docker統計,性能架構,外部工具)和配置策略。 其中包括Docker內存限制,交換和cgroups

如何使用Alter Table語句在MySQL中更改表?如何使用Alter Table語句在MySQL中更改表?Mar 19, 2025 pm 03:51 PM

本文討論了使用MySQL的Alter Table語句修改表,包括添加/刪除列,重命名表/列以及更改列數據類型。

在 Linux 中運行 MySQl(有/沒有帶有 phpmyadmin 的 podman 容器)在 Linux 中運行 MySQl(有/沒有帶有 phpmyadmin 的 podman 容器)Mar 04, 2025 pm 03:54 PM

本文比較使用/不使用PhpMyAdmin的Podman容器直接在Linux上安裝MySQL。 它詳細介紹了每種方法的安裝步驟,強調了Podman在孤立,可移植性和可重複性方面的優勢,還

什麼是 SQLite?全面概述什麼是 SQLite?全面概述Mar 04, 2025 pm 03:55 PM

本文提供了SQLite的全面概述,SQLite是一個獨立的,無服務器的關係數據庫。 它詳細介紹了SQLite的優勢(簡單,可移植性,易用性)和缺點(並發限制,可伸縮性挑戰)。 c

如何為MySQL連接配置SSL/TLS加密?如何為MySQL連接配置SSL/TLS加密?Mar 18, 2025 pm 12:01 PM

文章討論了為MySQL配置SSL/TLS加密,包括證書生成和驗證。主要問題是使用自簽名證書的安全含義。[角色計數:159]

在MacOS上運行多個MySQL版本:逐步指南在MacOS上運行多個MySQL版本:逐步指南Mar 04, 2025 pm 03:49 PM

本指南展示了使用自製在MacOS上安裝和管理多個MySQL版本。 它強調使用自製裝置隔離安裝,以防止衝突。 本文詳細詳細介紹了安裝,起始/停止服務和最佳PRA

哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什麼?哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什麼?Mar 21, 2025 pm 06:28 PM

文章討論了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比較了它們對初學者和高級用戶的功能和適合性。[159個字符]

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
1 個月前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器