Google最近發布新聞稿,宣布推出ASPIRE訓練框架,專為大語言模型設計。該框架旨在提升AI模型的選擇性預測能力。
Google提到,當下大語言模型在自然語言理解和生成內容方面發展迅速,已被用於建立各種創新應用,但要應用於高風險決策類場合依然不妥。這是由於模型預測具有不確定性及「幻覺」可能,因此Google開發了一個ASPIRE 訓練框架,為系列模型引入了「可信度」機制,即—— 模型會輸出一系列答案,每個答案都會具有正確機率評分。
▲ 圖源Google新聞稿(下同)
在技術層面,此訓練框架可分為三個階段:特定任務調整、答案採樣和自我評估學習。
其中「特定任務調整」階段是對已接受過基礎訓練的大型語言模型進行深入訓練,專注於強化模型的預測能力。研究人員主要為模型引入一系列可調參數,在特定任務的訓練資料集上微調預訓練語言模型,從而提升模型預測效能,讓模型能更好地解決特定問題。
第二階段為“答案取樣”,經過特定微調後,模型可以利用先前學習到的可調參數,為每個訓練問題產生不同的答案,並建立用於自我評估學習的資料集,產生一系列可信度較高的答案。 研究者同時使用 「集束搜尋(Beam Search)」方法及 Rouge-L 演算法來評估答案的質量,並將產生的答案及評分重新輸入給模型開啟第三階段。
而在第三階段「自我評估學習」中,研究人員為模型加入一組可調參數,專門用於提升模型自我評估能力。 這個階段的目標是讓模型學習「自己判斷輸出的答案準確度」,從而讓大語言模型在產生答案時,也會附上答案的正確機率評分。
Google研究人員使用CoQA、TriviaQA 和SQuAD 三個問答資料集來驗證ASPIRE 訓練框架的成果,據稱「經過ASPIRE 調整的OPT-2.7B 小模型,表現遠超更大的OPT- 30B 模型」。而這項實驗結果也同時表明,只要經過適當的調整,即使是小語言模型,在部分場景下也可以超越大語言模型。
研究人員總結稱,ASPIRE 框架訓練能夠顯著提升大語言模型輸出準確率,即使是較小的模型,也可以在經過微調後進行「準確且有自信」的預測。
以上是谷歌發布能讓 AI 自主判斷輸出準確性的模型訓練架構 ASPIRE的詳細內容。更多資訊請關注PHP中文網其他相關文章!

谷歌三件套指的是:1、google play商店,即下载各种应用程序的平台,类似于移动助手,安卓用户可以在商店下载免费或付费的游戏和软件;2、Google Play服务,用于更新Google本家的应用和Google Play提供的其他第三方应用;3、谷歌服务框架(GMS),是系统软件里面可以删除的一个APK程序,通过谷歌平台上架的应用和游戏都需要框架的支持。

中国不卖google手机的原因:谷歌已经全面退出中国市场了,所以不能在中国销售,在国内是没有合法途径销售。在中国消费市场中,消费者大都倾向于物美价廉以及功能实用的产品,所以竞争实力本就因政治因素大打折扣的谷歌手机主体市场一直不在中国大陆。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

2015 年,谷歌大脑开放了一个名为「TensorFlow」的研究项目,这款产品迅速流行起来,成为人工智能业界的主流深度学习框架,塑造了现代机器学习的生态系统。从那时起,成千上万的开源贡献者以及众多的开发人员、社区组织者、研究人员和教育工作者等都投入到这一开源软件库上。然而七年后的今天,故事的走向已经完全不同:谷歌的 TensorFlow 失去了开发者的拥护。因为 TensorFlow 用户已经开始转向 Meta 推出的另一款框架 PyTorch。众多开发者都认为 TensorFlow 已经输掉

前几天,谷歌差点遭遇一场公关危机,Bert一作、已跳槽OpenAI的前员工Jacob Devlin曝出,Bard竟是用ChatGPT的数据训练的。随后,谷歌火速否认。而这场争议,也牵出了一场大讨论:为什么越来越多Google顶尖研究员跳槽OpenAI?这场LLM战役它还能打赢吗?知友回复莱斯大学博士、知友「一堆废纸」表示,其实谷歌和OpenAI的差距,是数据的差距。「OpenAI对LLM有强大的执念,这是Google这类公司完全比不上的。当然人的差距只是一个方面,数据的差距以及对待数据的态度才

由于可以做一些没训练过的事情,大型语言模型似乎具有某种魔力,也因此成为了媒体和研究员炒作和关注的焦点。当扩展大型语言模型时,偶尔会出现一些较小模型没有的新能力,这种类似于「创造力」的属性被称作「突现」能力,代表我们向通用人工智能迈进了一大步。如今,来自谷歌、斯坦福、Deepmind和北卡罗来纳大学的研究人员,正在探索大型语言模型中的「突现」能力。解码器提示的 DALL-E神奇的「突现」能力自然语言处理(NLP)已经被基于大量文本数据训练的语言模型彻底改变。扩大语言模型的规模通常会提高一系列下游N

让一位乒乓球爱好者和机器人对打,按照机器人的发展趋势来看,谁输谁赢还真说不准。机器人拥有灵巧的可操作性、腿部运动灵活、抓握能力出色…… 已被广泛应用于各种挑战任务。但在与人类互动紧密的任务中,机器人的表现又如何呢?就拿乒乓球来说,这需要双方高度配合,并且球的运动非常快速,这对算法提出了重大挑战。在乒乓球比赛中,首要的就是速度和精度,这对学习算法提出了很高的要求。同时,这项运动具有高度结构化(具有固定的、可预测的环境)和多智能体协作(机器人可以与人类或其他机器人一起对打)两大特点,使其成为研究人

ChatGPT在手,有问必答。你可知,与它每次对话的计算成本简直让人泪目。此前,分析师称ChatGPT回复一次,需要2美分。要知道,人工智能聊天机器人所需的算力背后烧的可是GPU。这恰恰让像英伟达这样的芯片公司豪赚了一把。2月23日,英伟达股价飙升,使其市值增加了700多亿美元,总市值超5800亿美元,大约是英特尔的5倍。在英伟达之外,AMD可以称得上是图形处理器行业的第二大厂商,市场份额约为20%。而英特尔持有不到1%的市场份额。ChatGPT在跑,英伟达在赚随着ChatGPT解锁潜在的应用案


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Dreamweaver Mac版
視覺化網頁開發工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Linux新版
SublimeText3 Linux最新版