逆向強化學習(IRL)是一種機器學習技術,透過觀察到的行為來推斷背後的潛在動機。與傳統的強化學習不同,IRL無需明確的獎勵訊號,而是透過行為來推斷潛在獎勵函數。這種方法為理解和模擬人類行為提供了一個有效的途徑。
IRL的工作原理是基於馬可夫決策過程(MDP)的架構。在MDP中,智能體透過選擇不同的行動與環境互動。環境會根據智能體的行動給予一個獎勵訊號。 IRL的目標是從觀察到的智能體行為推斷出一個未知的獎勵函數,以解釋智能體的行為。透過分析智能體在不同狀態下選擇的行動,IRL可以建模智能體的偏好和目標。這樣的獎勵函數可以用來進一步優化智能體的決策策略,提高其效能和適應性。 IRL在許多領域,如機器人學和強化學習中具有廣泛的應用潛力。
IRL的實際應用非常廣泛,包括機器人控制、自動駕駛、遊戲智能體、金融交易等領域。在機器人控制方面,IRL可以透過觀察專家的行為來推斷背後的意圖和動機,從而幫助機器人學習到更聰明的行為策略。在自動駕駛領域,IRL可以利用人類駕駛者的行為來學習更聰明的駕駛策略。這種學習方法可以提高自動駕駛系統的安全性和適應性。除此之外,IRL在遊戲智能體和金融交易方面也具有廣泛的應用前景。綜上所述,IRL在多個領域的應用都能夠為智慧系統的發展帶來重要的推動力。
IRL的實作方法主要包括資料推斷獎勵函數和基於梯度下降的方法。其中,基於梯度下降的方法是最常用的方法之一。它透過迭代更新獎勵函數來解釋智能體的行為,以獲得最優的獎勵函數。
基於梯度下降的方法通常需要一個代理策略作為輸入。這個策略可以是隨機策略、人類專家策略或是已經訓練好的強化學習策略。在演算法迭代的過程中,代理策略會被不斷地最佳化,以逐漸接近最優策略。透過迭代優化獎勵函數和代理策略,IRL能夠找到一組最優的獎勵函數和最優的策略,從而實現智能體的最優行為。
IRL還有一些常用的變體,例如最大熵逆向強化學習(MaxEnt IRL)和基於深度學習的逆向強化學習(Deep IRL)。 MaxEnt IRL是一種以最大化熵為目標的逆向強化學習演算法,其目的是為了尋找一個最優的獎勵函數和策略,從而使得智能體在執行過程中具有更強的探索性。而Deep IRL則利用深度神經網路來近似獎勵函數,從而可以更好地處理大規模和高維度的狀態空間。
總之,IRL是一種非常有用的機器學習技術,可以幫助智能體從觀察到的行為中推斷出其背後的潛在動機和意圖。 IRL在自動駕駛、機器人控制、遊戲智能體等領域都有廣泛的應用。未來隨著深度學習和強化學習等技術的發展,IRL也將得到更廣泛的應用與發展。其中,一些新的研究方向,如基於多智能體的逆向強化學習、基於自然語言的逆向強化學習等,也將進一步推動IRL技術的發展與應用。
以上是逆向強化學習:定義、原理與應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具