什麼是誤差反向傳播
誤差反向傳播法,又稱為Backpropagation演算法,是訓練神經網路的常用方法。它利用鍊式法則,計算神經網路輸出與標籤之間的誤差,並將誤差逐層反向傳播到每個節點,從而計算出每個節點的梯度。這些梯度可用於更新神經網路的權重和偏置,使網路逐漸接近最適解。透過反向傳播,神經網路能夠自動學習並調整參數,提高模型的效能和準確性。
在誤差反向傳播中,我們使用鍊式法則來計算梯度。
我們有一個神經網絡,它有輸入x,輸出y和隱藏層。我們透過反向傳播計算隱藏層每個節點的梯度。
首先,我們需要計算每個節點的誤差。對於輸出層,誤差是實際值與預測值之間的差異;對於隱藏層,誤差是下一層的誤差與目前層的權重乘積。這些誤差將用於調整權重以最小化預測與實際值之間的差異。
然後,我們使用鍊式法則來計算梯度。對於每個權重,我們計算它對誤差的貢獻,然後將這個貢獻反向傳播到前一層。
具體來說,假設我們的神經網路有一個權重w,它連接兩個節點。那麼,這個權重對誤差的貢獻就是權重與誤差的乘積。我們將這個貢獻反向傳播到前一層,即將這個貢獻乘以前一層的輸出和目前層的輸入的乘積。
這樣,我們就可以計算出每個節點的梯度,然後使用這些梯度來更新網路的權重和偏移。
誤差反向傳播的詳細步驟
假設我們有一個神經網絡,它有一個輸入層、一個隱藏層和一個輸出層。輸入層的激活函數是線性函數,隱藏層的激活函數是sigmoid函數,輸出層的激活函數也是sigmoid函數。
前向傳播
1.將訓練集資料輸入到神經網路的輸入層,得到輸入層的活化值。
2.將輸入層的活化值傳遞到隱藏層,經過sigmoid函數的非線性變換,得到隱藏層的活化值。
3.將隱藏層的活化值傳遞到輸出層,經過sigmoid函數的非線性變換,得到輸出層的活化值。
計算誤差
使用輸出層的活化值和實際標籤之間的交叉熵損失來計算誤差。具體來說,對於每個樣本,計算預測標籤和實際標籤之間的交叉熵,然後將這個交叉熵乘以對應的樣本權重(樣本權重通常是根據樣本的重要程度和分佈情況來確定的)。
反向傳播
1.計算輸出層每個節點的梯度
根據鍊式法則,對於每個節點,我們計算它對誤差的貢獻,然後將這個貢獻反向傳播到前一層。具體來說,對於每個節點,我們計算它對誤差的貢獻(即該節點的權重與誤差的乘積),然後將這個貢獻乘以前一層的輸出和當前層的輸入的乘積。這樣,我們就得到了輸出層每個節點的梯度。
2.計算隱藏層每個節點的梯度
#同樣地,根據鍊式法則,對於每個節點,我們計算它對誤差的貢獻,然後將此貢獻反向傳播到前一層。具體來說,對於每個節點,我們計算它對誤差的貢獻(即該節點的權重與誤差的乘積),然後將這個貢獻乘以前一層的輸出和當前層的輸入的乘積。這樣,我們就得到了隱藏層每個節點的梯度。
3.更新神經網路的權重和偏移
#根據梯度下降演算法,對於每個權重,我們計算它對誤差的梯度,然後將這個梯度乘以一個學習率(即可以控制更新速度的參數),得到該權重的更新量。對於每個偏置,我們也需要計算它對誤差的梯度,然後將這個梯度乘以一個學習率,得到該偏移的更新量。
迭代訓練
重複上述過程(前向傳播、計算誤差、反向傳播、更新參數),直到滿足停止準則(例如達到預設的最大迭代次數或誤差達到預設的最小值)。
這就是誤差反向傳播的詳細過程。需要注意的是,在實際應用中,我們通常使用更複雜的神經網路結構和激活函數,以及更複雜的損失函數和學習演算法來提高模型的效能和泛化能力。
以上是誤差反向傳播的概念與步驟的詳細內容。更多資訊請關注PHP中文網其他相關文章!
![無法使用chatgpt!解釋可以立即測試的原因和解決方案[最新2025]](https://img.php.cn/upload/article/001/242/473/174717025174979.jpg?x-oss-process=image/resize,p_40)
ChatGPT無法訪問?本文提供多種實用解決方案!許多用戶在日常使用ChatGPT時,可能會遇到無法訪問或響應緩慢等問題。本文將根據不同情況,逐步指導您解決這些問題。 ChatGPT無法訪問的原因及初步排查 首先,我們需要確定問題是出在OpenAI服務器端,還是用戶自身網絡或設備問題。 請按照以下步驟進行排查: 步驟1:檢查OpenAI官方狀態 訪問OpenAI Status頁面 (status.openai.com),查看ChatGPT服務是否正常運行。如果顯示紅色或黃色警報,則表示Open

2025年5月10日,麻省理工學院物理學家Max Tegmark告訴《衛報》,AI實驗室應在釋放人工超級智能之前模仿Oppenheimer的三位一體測試演算。 “我的評估是'康普頓常數',這是一場比賽的可能性

AI音樂創作技術日新月異,本文將以ChatGPT等AI模型為例,詳細講解如何利用AI輔助音樂創作,並輔以實際案例進行說明。我們將分別介紹如何通過SunoAI、Hugging Face上的AI jukebox以及Python的Music21庫進行音樂創作。 通過這些技術,每個人都能輕鬆創作原創音樂。但需注意,AI生成內容的版權問題不容忽視,使用時務必謹慎。 讓我們一起探索AI在音樂領域的無限可能! OpenAI最新AI代理“OpenAI Deep Research”介紹: [ChatGPT]Ope

ChatGPT-4的出现,极大地拓展了AI应用的可能性。相较于GPT-3.5,ChatGPT-4有了显著提升,它具备强大的语境理解能力,还能识别和生成图像,堪称万能的AI助手。在提高商业效率、辅助创作等诸多领域,它都展现出巨大的潜力。然而,与此同时,我们也必须注意其使用上的注意事项。 本文将详细解读ChatGPT-4的特性,并介绍针对不同场景的有效使用方法。文中包含充分利用最新AI技术的技巧,敬请参考。 OpenAI发布的最新AI代理,“OpenAI Deep Research”详情请点击下方链

CHATGPT應用程序:與AI助手釋放您的創造力!初學者指南 ChatGpt應用程序是一位創新的AI助手,可處理各種任務,包括寫作,翻譯和答案。它是一種具有無限可能性的工具,可用於創意活動和信息收集。 在本文中,我們將以一種易於理解的方式解釋初學者,從如何安裝chatgpt智能手機應用程序到語音輸入功能和插件等應用程序所獨有的功能,以及在使用該應用時要牢記的要點。我們還將仔細研究插件限制和設備對設備配置同步

ChatGPT中文版:解鎖中文AI對話新體驗 ChatGPT風靡全球,您知道它也提供中文版本嗎?這款強大的AI工具不僅支持日常對話,還能處理專業內容,並兼容簡體中文和繁體中文。無論是中國地區的使用者,還是正在學習中文的朋友,都能從中受益。 本文將詳細介紹ChatGPT中文版的使用方法,包括賬戶設置、中文提示詞輸入、過濾器的使用、以及不同套餐的選擇,並分析潛在風險及應對策略。此外,我們還將對比ChatGPT中文版和其他中文AI工具,幫助您更好地了解其優勢和應用場景。 OpenAI最新發布的AI智能

這些可以將其視為生成AI領域的下一個飛躍,這為我們提供了Chatgpt和其他大型語言模型聊天機器人。他們可以代表我們採取行動,而不是簡單地回答問題或產生信息

使用chatgpt有效的多個帳戶管理技術|關於如何使用商業和私人生活的詳盡解釋! Chatgpt在各種情況下都使用,但是有些人可能擔心管理多個帳戶。本文將詳細解釋如何為ChatGpt創建多個帳戶,使用時該怎麼做以及如何安全有效地操作它。我們還介紹了重要的一點,例如業務和私人使用差異,並遵守OpenAI的使用條款,並提供指南,以幫助您安全地利用多個帳戶。 Openai


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。