搜尋
首頁科技週邊人工智慧使用決策樹分類器確定資料集中的關鍵特徵選取方法

使用決策樹分類器確定資料集中的關鍵特徵選取方法

決策樹分類器是一種基於樹狀結構的監督學習演算法。它將資料集劃分為多個決策單元,每個單元對應一組特徵條件和一個預測輸出值。在分類任務中,決策樹分類器透過學習訓練資料集中特徵和標籤之間的關係,建立一個決策樹模型,並將新樣本分類到對應的預測輸出值。在這個過程中,選擇重要特徵至關重要。本文將介紹如何使用決策樹分類器從資料集中選擇重要特徵。

一、特徵選擇的意義

特徵選擇是為了能夠更準確地預測目標變量,從原始資料集中選擇最具代表性的特徵。在實際應用中,可能存在許多冗餘或無關的特徵,它們會幹擾模型的學習過程,導致模型的泛化能力下降。因此,選擇一組最具代表性的特徵可以有效提高模型效能,並減少過度擬合的風險。

二、使用決策樹分類器進行特徵選擇

#決策樹分類器是基於樹狀結構的一種分類器。它使用資訊增益來評估特徵的重要性。資訊增益越大,表示特徵對分類結果的影響越大。因此,在決策樹分類器中,選擇具有較大資訊增益的特徵進行分類。特徵選擇的步驟如下:

1.計算每個特徵的資訊增益

資訊增益是指特徵對分類結果的影響程度,可以用熵來衡量。熵越小,表示資料集的純度越高,也就是說特徵對分類的影響越大。在決策樹分類器中,計算每個特徵的資訊增益可以使用公式:

\operatorname{Gain}(F)=\operatorname{Ent}(S)-\sum_ {v\in\operatorname{Values}(F)}\frac{\left|S_{v}\right|}{|S|}\operatorname{Ent}\left(S_{v}\right)

#其中,\operatorname{Ent}(S)表示資料集S的熵,\left|S_{v}\right|表示特徵F取值為v的樣本集合,\operatorname{ Ent}\left(S_{v}\right)表示取值為v的樣本集合的熵。資訊增益越大,表示該特徵對分類結果的影響越大。

2.選擇資訊增益最大的特徵

#在計算每個特徵的資訊增益後,選擇資訊增益最大的特徵作為分類器的分裂特徵。然後將資料集根據該特徵分成多個子集,分別對每個子集遞歸進行上述步驟,直到滿足停止條件。

3.停止條件

  • #決策樹分類器遞歸建構決策樹的過程需要滿足停止條件,通常有以下幾種情況:
  • 樣本集合為空或只包含一個類別的樣本,將該樣本集合劃分為葉節點。
  • 所有特徵的資訊增益都小於某個閾值,將該樣本集合劃分為葉節點。
  • 樹的深度達到預設的最大值,將該樣本集合分割為葉節點。

4.避免過擬合

#在建構決策樹時,為了避免過度擬合,可以採用剪枝技術。剪枝是指將已經生成的決策樹進行裁剪,去除一些不必要的分支,以達到減少模型複雜度、提高泛化能力的目的。常用的剪枝方法有預剪枝和後剪枝。

預剪枝是指在決策樹生成過程中,對每個節點進行評估,如果當前節點的分裂不能帶來模型性能的提升,則停止分裂並將該節點設為葉節點。預剪枝的優點是計算簡單,但缺點是容易欠擬合。

後剪枝是指在決策樹產生完成後,對已經產生的決策樹進行裁切。具體做法是將決策樹的某些節點替換為葉節點,並計算剪枝後模型的效能。如果剪枝後模型性能不降反升,則保留剪枝後的模型。後剪枝的優點是可以減少過度擬合,但缺點是計算複雜度高。

以上是使用決策樹分類器確定資料集中的關鍵特徵選取方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:网易伏羲。如有侵權,請聯絡admin@php.cn刪除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器