搜尋
首頁後端開發Python教學Numpy函式庫常用函數彙總:實作資料分析與建模的利器

Numpy函式庫常用函數彙總:實作資料分析與建模的利器

Numpy是Python中最常用的數學函式庫之一,它整合了許多最佳的數學函數和操作。 Numpy的使用非常廣泛,包括統計、線性代數、影像處理、機器學習、神經網路等領域。在資料分析和建模方面,Numpy更是不可或缺的工具之一。本文將分享Numpy常用的數學函數,以及使用這些函數實作資料分析和建模的範例程式碼。

一、建立陣列

使用Numpy中array()函數可以建立一個數組,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr)

這會輸出[1 2 3 4 5],表示創建了一個一維數組。

我們也可以建立一個二維數組,程式碼範例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

這會輸出:

[[1 2 3]
 [4 5 6]]

表示建立了一個二維數組。

二、陣列屬性

使用Numpy中的ndimshapesize屬性可以取得陣列的維度、形狀與元素個數,程式碼範例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr.ndim)  # 输出 2,表示数组是二维的
print(arr.shape)  # 输出 (2, 3),表示数组有2行3列
print(arr.size)  # 输出 6,表示数组有6个元素

三、陣列的運算

#Numpy陣列可以進行加、減、乘、除等運算。首先看一下為陣列加一個標量的運算,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr + 2)  # 输出 [3 4 5 6 7]

表示陣列中的每個元素都加上了2。

接下來是兩個陣列相加的運算,程式碼範例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
print(arr1 + arr2)  # 输出 [5 7 9]

表示兩個陣列中對應的元素相加。

Numpy也提供了一些特定的運算,例如:

  • #平方運算:使用power()函數,程式碼範例:

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(np.power(arr, 2))  # 输出 [ 1  4  9 16 25]

    這表示陣列中的每個元素都平方了。

  • 開方運算:使用sqrt()函數,程式碼範例:

    import numpy as np
    
    arr = np.array([1, 4, 9, 16, 25])
    print(np.sqrt(arr))  # 输出 [1. 2. 3. 4. 5.]

    這表示陣列中的每個元素都開方了。

  • 求和:使用sum()函數,程式碼範例:

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(np.sum(arr))  # 输出 15

    這表示陣列中的所有元素求和。

  • 求最大值和最小值:使用max()min()函數,程式碼範例:

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(np.max(arr))  # 输出 5,表示数组中的最大值
    print(np.min(arr))  # 输出 1,表示数组中的最小值

四、陣列的索引和切片

我們可以使用下標來存取陣列中的元素,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr[0])  # 输出 1,表示数组中的第一个元素

我們也可以對陣列進行切片操作,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr[1:4])  # 输出 [2 3 4],表示从数组中取出第2个到第4个元素

五、陣列形狀的變換

Numpy中提供了一些函數用於改變陣列的形狀,其中之一是reshape()函數。我們可以使用reshape()函數來重塑陣列的形狀,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr.reshape(5, 1))

這會傳回一個形狀為(5, 1)的二維陣列:

[[1]
 [2]
 [3]
 [4]
 [5]]

六、數組的合併與拆分

Numpy中提供了一些函數用於合併和拆分數組。

我們可以使用concatenate()函數將兩個陣列沿著某個維度合併,程式碼範例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
print(np.concatenate((arr1, arr2)))  # 输出 [1 2 3 4 5 6]

我們也可以使用vstack() hstack()函數將兩個陣列水平或垂直堆疊在一起,程式碼範例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

# 垂直堆叠
print(np.vstack((arr1, arr2)))  # 输出 [[1 2 3] [4 5 6]]

# 水平堆叠
print(np.hstack((arr1, arr2)))  # 输出 [1 2 3 4 5 6]

我們也可以使用split()函數將一個陣列拆分成多個數組,程式碼範例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(np.split(arr, 5))  # 输出 [array([1]), array([2]), array([3]), array([4]), array([5])]

這會將數組拆分成5個一維數組,每個數組只包含一個元素。

七、綜合範例

現在,我們將使用Numpy中的函數實作一個簡單的資料分析和建模的範例。

範例:假設你有100個學生的成績,你想計算他們的平均成績、最高成績和最低成績。

首先,我們用random()函數產生100個隨機數,並使用mean()max()min()函數計算它們的平均值、最高值和最低值,程式碼範例:

import numpy as np

grades = np.random.randint(50, 100, 100)  # 生成50到100之间的100个随机数
print("平均成绩:", np.mean(grades))
print("最高成绩:", np.max(grades))
print("最低成绩:", np.min(grades))

接下來,我們將使用histogram()函數產生一個成績的直方圖,程式碼範例:

import matplotlib.pyplot as plt
import numpy as np

grades = np.random.randint(50, 100, 100)  # 生成50到100之间的100个随机数
hist, bins = np.histogram(grades, bins=10, range=(50, 100))

plt.hist(grades, bins=10, range=(50, 100))
plt.show()

最後,我們將使用percentile()函數計算成績的百分位數,程式碼範例:

import numpy as np

grades = np.random.randint(50, 100, 100)  # 生成50到100之间的100个随机数
print("90%的成绩高于:", np.percentile(grades, 90))

以上就是本文總結的Numpy常用函數,這些函數可以幫助我們實現資料分析和建模。希望這些範例程式碼可以幫助讀者更好地理解。

以上是Numpy函式庫常用函數彙總:實作資料分析與建模的利器的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境