在使用大型語言模型(LLM)時,幻覺是一個常見問題。儘管LLM可以產生流暢連貫的文本,但其產生的資訊往往不準確或不一致。為了防止LLM產生幻覺,可以利用外部的知識來源,例如資料庫或知識圖譜,來提供事實資訊。這樣一來,LLM可以依賴這些可靠的資料來源,從而產生更準確和可靠的文字內容。
向量資料庫與知識圖譜
向量資料庫
向量資料庫是一組表示實體或概念的高維向量。它們可以用於度量不同實體或概念之間的相似性或相關性,透過它們的向量表示進行計算。
一個向量資料庫可以根據向量距離告訴你,「巴黎」和「法國」比「巴黎」和「德國」更相關。
查詢向量資料庫通常涉及搜尋相似的向量或基於特定標準的向量檢索。以下是一個查詢向量資料庫的簡單範例。
假設有一個高維向量資料庫,儲存了客戶設定檔。您想找到與給定參考客戶相似的客戶。
首先,為了將客戶定義為向量表示,我們可以提取相關特徵或屬性並將其轉換為向量形式。
可以使用適當的演算法(如k近鄰或餘弦相似度)在向量資料庫中進行相似度搜索,以識別最相似的鄰居。
檢索與確定的最近鄰向量對應的客戶配置文件,這些概要文件表示與參考客戶相似的客戶,根據定義的相似性度量。
向使用者展示檢索到的客戶個人資料或相關信息,如姓名、人口統計資料或購買歷史。
知識圖譜
知識圖譜是表示實體或概念及其關係(如事實、屬性或類別)的節點和邊的集合。基於它們的節點和邊緣屬性,可用於查詢或推斷關於不同實體或概念的事實資訊。
例如,一個知識圖可以根據邊緣標籤告訴你「巴黎」是「法國」的首都。
查詢圖資料庫涉及遍歷圖結構並根據特定標準檢索節點、關係或模式。
假設你有一個表示社群網路的圖資料庫,其中使用者是節點,他們的關係表示為連結節點的邊。如果為給定使用者找到朋友的朋友(共同聯繫),那麼我們應該進行如下操作:
1、在圖資料庫中標識表示參考用戶的節點。這可以透過查詢特定的使用者識別碼或其他相關標準來實現。
2、使用圖查詢語言,例如Cypher(在Neo4j中使用)或Gremlin,從參考使用者節點遍歷圖。指定要探索的模式或關係。
MATCH (:User {userId: ‘referenceUser’})-[:FRIEND]->()-[:FRIEND]->(fof:User) RETURN fof
這個查詢從參考用戶開始,沿著FRIEND關係找到另一個節點(FRIEND),然後沿著另一個FRIEND關係找到朋友的朋友(fof)。
3、對圖資料庫執行查詢,根據查詢模式檢索結果節點(朋友的朋友),可以取得關於檢索節點的特定屬性或其他資訊。
圖資料庫可以提供更進階的查詢功能,包括過濾、聚合和複雜的模式匹配。具體的查詢語言和語法可能會有所不同,但一般的過程涉及遍歷圖結構以檢索符合所需標準的節點和關係。
知識圖譜解決「幻覺」問題的優勢
知識圖譜比向量資料庫提供更精確和具體的資訊。向量資料庫表示兩個實體或概念之間的相似性或相關性,而知識圖可以更好地理解它們之間的關係。例如知識圖譜可以告訴你「艾菲爾鐵塔」是「巴黎」的地標,而向量資料庫只能顯示這兩個概念的相似程度,但是具體他們之間如何相關的卻沒有說明。
知識圖支援比向量資料庫更多樣化、更複雜的查詢。向量資料庫主要可以回答基於向量距離、相似性或最近鄰的查詢,這些查詢僅限於直接的相似性測量。而知識圖可以處理基於邏輯運算子的查詢,例如「具有屬性Z的所有實體是什麼?」或「W和V的共同範疇是什麼?」這可以幫助LLM產生更多樣化和有趣的文本。
知識圖比向量資料庫更能進行推理和推論。向量資料庫只能提供儲存在資料庫中的直接資訊。而知識圖可以提供從實體或概念之間的關係派生的間接資訊。例如,一個知識圖譜可以根據「巴黎是法國的首都」和「法國位於歐洲」這兩個事實推論出「艾菲爾鐵塔位於歐洲」。這可以幫助LLM產生更具邏輯性和一致性的文字。
所以知識圖譜是一個比向量資料庫更好的解決方案。可以為LLM提供了更準確、相關、多樣、有趣、合乎邏輯和一致的訊息,使它們更可靠地產生準確和真實的文本。但這裡的關鍵是文檔文檔之間需要有清晰的關係,否則知識圖譜將無法捕捉到它。
但是,知识图谱的使用并没有向量数据库那么直接简单,不仅在内容的梳理(数据),应用部署,查询生成等方面都没有向量数据库那么方便,这也影响了它在实际应用中的使用频率。所以下面我们使用一个简单的例子来介绍如何使用知识图谱构建RAG。
代码实现
我们需要使用3个主要工具/组件:
1、LlamaIndex是一个编排框架,它简化了私有数据与公共数据的集成,它提供了数据摄取、索引和查询的工具,使其成为生成式人工智能需求的通用解决方案。
2、嵌入模型将文本转换为文本所提供的一条信息的数字表示形式。这种表示捕获了所嵌入内容的语义含义,使其对于许多行业应用程序都很健壮。这里使用“thenlper/gte-large”模型。
3、需要大型语言模型来根据所提供的问题和上下文生成响应。这里使用Zephyr 7B beta模型
下面我们开始进行代码编写,首先安装包
%%capture pip install llama_index pyvis Ipython langchain pypdf
启用日志Logging Level设置为“INFO”,我们可以输出有助于监视应用程序操作流的消息
import logging import sys # logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
导入依赖项
from llama_index import (SimpleDirectoryReader,LLMPredictor,ServiceContext,KnowledgeGraphIndex) # from llama_index.graph_stores import SimpleGraphStore from llama_index.storage.storage_context import StorageContext from llama_index.llms import HuggingFaceInferenceAPI from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings from llama_index.embeddings import LangchainEmbedding from pyvis.network import Network
我们使用Huggingface推理api端点载入LLM
HF_TOKEN = "api key DEEPHUB 123456" llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN )
首先载入嵌入模型:
embed_model = LangchainEmbedding(HuggingFaceInferenceAPIEmbeddings(api_key=HF_TOKEN,model_name="thenlper/gte-large") )
加载数据集
documents = SimpleDirectoryReader("/content/Documents").load_data() print(len(documents)) ####Output### 44
构建知识图谱索引
创建知识图谱通常涉及专业和复杂的任务。通过利用Llama Index (LLM)、KnowledgeGraphIndex和GraphStore,可以方便地任何数据源创建一个相对有效的知识图谱。
#setup the service context service_context = ServiceContext.from_defaults(chunk_size=256,llm=llm,embed_model=embed_model ) #setup the storage context graph_store = SimpleGraphStore() storage_context = StorageContext.from_defaults(graph_store=graph_store) #Construct the Knowlege Graph Undex index = KnowledgeGraphIndex.from_documents( documents=documents,max_triplets_per_chunk=3,service_context=service_context,storage_context=storage_context,include_embeddings=True)
Max_triplets_per_chunk:它控制每个数据块处理的关系三元组的数量
Include_embeddings:切换在索引中包含嵌入以进行高级分析。
通过构建查询引擎对知识图谱进行查询
query = "What is ESOP?" query_engine = index.as_query_engine(include_text=True,response_mode ="tree_summarize",embedding_mode="hybrid",similarity_top_k=5,) # message_template =f"""Please check if the following pieces of context has any mention of the keywords provided in the Question.If not then don't know the answer, just say that you don't know.Stop there.Please donot try to make up an answer. Question: {query} Helpful Answer: """ # response = query_engine.query(message_template) # print(response.response.split("")[-1].strip()) #####OUTPUT ##################### ESOP stands for Employee Stock Ownership Plan. It is a retirement plan that allows employees to receive company stock or stock options as part of their compensation. In simpler terms, it is a plan that allows employees to own a portion of the company they work for. This can be a motivating factor for employees as they have a direct stake in the company's success. ESOPs can also be a tax-efficient way for companies to provide retirement benefits to their employees.
可以看到,输出的结果已经很好了,可以说与向量数据库的结果非常一致。
最后还可以可视化我们生成的图谱,使用Pyvis库进行可视化展示
from pyvis.network import Network from IPython.display import display g = index.get_networkx_graph() net = Network(notebook=True,cdn_resources="in_line",directed=True) net.from_nx(g) net.show("graph.html") net.save_graph("Knowledge_graph.html") # import IPython IPython.display.HTML(filename="/content/Knowledge_graph.html")
通过上面的代码我们可以直接通过LLM生成知识图谱,这样简化了我们非常多的人工操作。如果需要更精准更完整的知识图谱,还需要人工手动检查,这里就不细说了。
数据存储,通过持久化数据,可以将结果保存到硬盘中,供以后使用。
storage_context.persist()
存储的结果如下:
总结
向量数据库和知识图谱的区别在于它们存储和表示数据的方法。向量数据库擅长基于相似性的操作,依靠数值向量来测量实体之间的距离。知识图谱通过节点和边缘捕获复杂的关系和依赖关系,促进语义分析和高级推理。
对于语言模型(LLM)幻觉,知识图被证明优于向量数据库。知识图谱提供了更准确、多样、有趣、有逻辑性和一致性的信息,减少了LLM产生幻觉的可能性。这种优势源于它们能够提供实体之间关系的精确细节,而不仅仅是表明相似性,从而支持更复杂的查询和逻辑推理。
在以前知识图谱的应用难点在于图谱的构建,但是现在LLM的出现简化了这个过程,使得我们可以轻松的构建出可用的知识图谱,这使得他在应用方面又向前迈出了一大步。对于RAG,知识图谱是一个非常好的应用方向。
以上是利用知識圖譜增強RAG模型的能力和減輕大模型虛假印象的詳細內容。更多資訊請關注PHP中文網其他相關文章!

如果你一直在关注大型语言模型的架构,你可能会在最新的模型和研究论文中看到“SwiGLU”这个词。SwiGLU可以说是在大语言模型中最常用到的激活函数,我们本篇文章就来对它进行详细的介绍。SwiGLU其实是2020年谷歌提出的激活函数,它结合了SWISH和GLU两者的特点。SwiGLU的中文全称是“双向门控线性单元”,它将SWISH和GLU两种激活函数进行了优化和结合,以提高模型的非线性表达能力。SWISH是一种非常普遍的激活函数,它在大语言模型中得到广泛应用,而GLU则在自然语言处理任务中表现出

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库则处理这类结构化信息时则显得力不从心,它们更专注于处理高维向量表示的非结构化数据。在RAG应用中,结合结构化化的图数据和非结构化的文本向量搜索,可以让我们同时享受两者的优势,这也是本文将要探讨的内容。构

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

2024年是大型语言模型(LLM)迅速发展的一年。在LLM的训练中,对齐方法是一个重要的技术手段,其中包括监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。这些方法在LLM的发展中起到了至关重要的作用,但是对齐方法需要大量的人工注释数据。面对这一挑战,微调成为一个充满活力的研究领域,研究人员积极致力于开发能够有效利用人类数据的方法。因此,对齐方法的发展将推动LLM技术的进一步突破。加州大学最近进行了一项研究,介绍了一种名为SPIN(SelfPlayfInetuNing)的新技术。S

在使用大型语言模型(LLM)时,幻觉是一个常见问题。尽管LLM可以生成流畅连贯的文本,但其生成的信息往往不准确或不一致。为了防止LLM产生幻觉,可以利用外部的知识来源,比如数据库或知识图谱,来提供事实信息。这样一来,LLM可以依赖这些可靠的数据源,从而生成更准确和可靠的文本内容。向量数据库和知识图谱向量数据库向量数据库是一组表示实体或概念的高维向量。它们可以用于度量不同实体或概念之间的相似性或相关性,通过它们的向量表示进行计算。一个向量数据库可以根据向量距离告诉你,“巴黎”和“法国”比“巴黎”和

我们将讨论使用开源的大型语言多模态模型(LargeLanguageMulti-Modal)构建检索增强生成(RAG)系统的方法。我们的重点是在不依赖LangChain或LLlamaindex的情况下实现这一目标,以避免增加更多的框架依赖。什么是RAG在人工智能领域,检索增强生成(retrieve-augmentedgeneration,RAG)技术的出现为大型语言模型(LargeLanguageModels)带来了变革性的改进。RAG的本质是通过允许模型从外部源动态检索实时信息,从而增强人工智能


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3漢化版
中文版,非常好用

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中