反向模型中隱含的事實是,建立查詢時基於集合和程序的方法之間存在著不同。
由於 SQL 是基於集合的,所以這種方法比起程式方法更有效,這也解釋了為什麼在某些情況下,SQL 可以比程式碼工作地更快。
基於集合的查詢方法也是資料探勘分析產業要求你必須掌握的技能!因為你需要熟練的在這兩種方法之間進行切換。如果你發現自己的查詢中存在程式查詢,則應該考慮是否需要重寫這部分。
#從查詢到執行計劃反向模式不是靜止不變的。在你成為 SQL 開發者的過程中,避免查詢反向模型和重寫查詢可能會是一個很艱難的任務。所以時常需要使用工具以更結構化的方法來優化你的查詢。
對效能的思考不僅需要更結構化的方法,還需要更深入的方法。
然而,這種結構化和深入的方法主要是基於查詢計劃的。查詢計劃首先被解析為“解析樹”並且準確地定義了每個操作使用什麼演算法以及如何協調操作過程。
查詢最佳化在最佳化查詢時,很可能需要手動檢查優化器產生的計劃。在這種情況下,將需要透過查看查詢計劃來再次分析你的查詢。
要掌握這樣的查詢計劃,你需要使用一些資料庫管理系統提供給你的工具。你可以使用以下的一些工具:
請注意,如果你正在使用 PostgreSQL,則可以區分不同的 EXPLAIN,你只需取得描述,說明 planner 如何在不執行計劃的情況下執行查詢。同時 EXPLAIN ANALYZE 會執行查詢,並傳回給你一個評估查詢計畫與實際查詢計畫的分析報告。一般來說,實際執行計劃會實際的執行這個計劃,而評估執行計劃可以在不執行查詢的情況下,解決這個問題。在邏輯上,實際執行計劃更為有用,因為它包含了執行查詢時,實際發生的其它細節和統計資料。
接下來你將了解 XPLAIN 和 ANALYZE 的更多信息,以及如何使用這兩個命令來進一步了解你的查詢計劃和查詢性能。要做到這一點,你需要開始使用兩個表: one_million 和 half_million 來做一些範例。
你可以藉助 EXPLAIN 來擷取 one_million 表的目前資訊:確保已將其放在執行查詢的首要位置,在執行完成之後,會回到查詢計畫中:
EXPLAIN SELECT * FROM one_million; QUERY PLAN <span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-emphasis">___</span>_ Seq Scan on one_million (cost=0.00..18584.82 rows=1025082 width=36) (1 row)
在上述範例中,我們看到查詢的 Cost 是0.00..18584.82 ,行數是1025082,列寬是36。
同時,也可以藉助 ANALYZE 來更新統計資料 。
ANALYZE one_million; EXPLAIN SELECT * FROM one_million; QUERY PLAN <span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-emphasis">___</span>_ Seq Scan on one_million (cost=0.00..18334.00 rows=1000000 width=37) (1 row)
除了 EXPLAIN 和 ANALYZE,你也可以藉助 EXPLAIN ANALYZE 來擷取實際執行時間:
EXPLAIN ANALYZE SELECT * FROM one_million; QUERY PLAN <span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span>_ Seq Scan on one_million (cost=0.00..18334.00 rows=1000000 width=37) (actual time=0.015..1207.019 rows=1000000 loops=1) Total runtime: 2320.146 ms (2 rows)
使用 EXPLAIN ANALYZE 的缺點就是需要實際執行查詢,這一點值得注意!
到目前為止,我們看到的所有演算法都是順序掃描或全表掃描:這是一種在資料庫上進行掃描的方法,掃描的表的每一行都是以順序(串行)的順序進行讀取,每一列都會檢查是否符合條件。在效能方面,順序掃描不是最佳的執行計劃,因為需要掃描整個表格。但是如果使用慢磁碟,順序讀取也會很快。
還有一些其它演算法的範例:
EXPLAIN ANALYZE SELECT * FROM one<span class="hljs-emphasis">_million JOIN half_</span>million ON (one<span class="hljs-emphasis">_million.counter=half_</span>million.counter); QUERY PLAN <span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span><span class="hljs-strong">_____</span>_ Hash Join (cost=15417.00..68831.00 rows=500000 width=42) (actual time=1241.471..5912.553 rows=500000 loops=1) Hash Cond: (one<span class="hljs-emphasis">_million.counter = half_</span>million.counter) <span class="hljs-code"> -> Seq Scan on one_million</span> <span class="hljs-code"> (cost=0.00..18334.00 rows=1000000 width=37)</span> <span class="hljs-code"> (actual time=0.007..1254.027 rows=1000000 loops=1)</span> <span class="hljs-code"> -> Hash (cost=7213.00..7213.00 rows=500000 width=5)</span> <span class="hljs-code"> (actual time=1241.251..1241.251 rows=500000 loops=1)</span> <span class="hljs-code"> Buckets: 4096 Batches: 16 Memory Usage: 770kB</span> <span class="hljs-code"> -> Seq Scan on half_million</span> <span class="hljs-code"> (cost=0.00..7213.00 rows=500000 width=5)</span> (actual time=0.008..601.128 rows=500000 loops=1) Total runtime: 6468.337 ms
我們可以看到查詢優化器選擇了 Hash Join。請記住這個操作,因為我們需要使用這個來評估查詢的時間複雜度。我們注意到了上面範例中沒有 half_million.counter 索引,我們可以在下面範例中新增索引 :
<span class="hljs-keyword">CREATE</span> <span class="hljs-keyword">INDEX</span> <span class="hljs-keyword">ON</span> half_million(counter); <span class="hljs-keyword">EXPLAIN</span> <span class="hljs-keyword">ANALYZE</span> <span class="hljs-keyword">SELECT</span> * <span class="hljs-keyword">FROM</span> one_million <span class="hljs-keyword">JOIN</span> half_million <span class="hljs-keyword">ON</span> (one_million.counter=half_million.counter); QUERY PLAN ______________________________________________________________ <span class="hljs-keyword">Merge</span> <span class="hljs-keyword">Join</span> (<span class="hljs-keyword">cost</span>=<span class="hljs-number">4.12</span>.<span class="hljs-number">.37650</span><span class="hljs-number">.65</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">500000</span> width=<span class="hljs-number">42</span>) (actual <span class="hljs-keyword">time</span>=<span class="hljs-number">0.033</span>.<span class="hljs-number">.3272</span><span class="hljs-number">.940</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">500000</span> loops=<span class="hljs-number">1</span>) <span class="hljs-keyword">Merge</span> Cond: (one_million.counter = half_million.counter) -> <span class="hljs-keyword">Index</span> <span class="hljs-keyword">Scan</span> <span class="hljs-keyword">using</span> one_million_counter_idx <span class="hljs-keyword">on</span> one_million (<span class="hljs-keyword">cost</span>=<span class="hljs-number">0.00</span>.<span class="hljs-number">.32129</span><span class="hljs-number">.34</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">1000000</span> width=<span class="hljs-number">37</span>) (actual <span class="hljs-keyword">time</span>=<span class="hljs-number">0.011</span>.<span class="hljs-number">.694</span><span class="hljs-number">.466</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">500001</span> loops=<span class="hljs-number">1</span>) -> <span class="hljs-keyword">Index</span> <span class="hljs-keyword">Scan</span> <span class="hljs-keyword">using</span> half_million_counter_idx <span class="hljs-keyword">on</span> half_million (<span class="hljs-keyword">cost</span>=<span class="hljs-number">0.00</span>.<span class="hljs-number">.14120</span><span class="hljs-number">.29</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">500000</span> width=<span class="hljs-number">5</span>) (actual <span class="hljs-keyword">time</span>=<span class="hljs-number">0.010</span>.<span class="hljs-number">.683</span><span class="hljs-number">.674</span> <span class="hljs-keyword">rows</span>=<span class="hljs-number">500000</span> loops=<span class="hljs-number">1</span>) Total runtime: <span class="hljs-number">3833.310</span> ms (<span class="hljs-number">5</span> <span class="hljs-keyword">rows</span>)
透過建立索引,查詢最佳化器已經決定了索引掃描時,如何找到 Merge join。
請注意,索引掃描和全表掃描(順序掃描)之間的區別:後者(也稱為「表掃描」)是透過掃描所有資料或索引所有頁面來查找到適合的結果,而前者只掃描表中的每一行。
教學的第二部分內容,就介紹到這裡。後續還會有《如何寫出更好的SQL查詢》系列的最後一篇文章,敬請期待。
轉載請註明出自:葡萄城控制
以上是終極指南-如何寫出更好的SQL查詢?的詳細內容。更多資訊請關注PHP中文網其他相關文章!