搜尋
首頁資料庫mysql教程MySQL查询优化-explain_MySQL

MySQLexplain

       一、MySQL 查询优化器是如何工作的

        MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。

        EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列:

         

说明
id          MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。

         

select_type 查询类型 说明
SIMPLE 简单的 select 查询,不使用 union 及子查询
PRIMARY 最外层的 select 查询
UNION UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集
DEPENDENT UNION UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集
SUBQUERY 子查询中的第一个 select 查询,不依赖于外 部查询的结果集
DEPENDENT SUBQUERY 子查询中的第一个 select 查询,依赖于外部 查询的结果集
DERIVED 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。
UNCACHEABLE SUBQUERY 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。
UNCACHEABLE UNION UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询

说明
table  输出行所引用的表

         

type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 说明
system  表仅有一行(=系统表)。这是 const 连接类型的一个特例。
const  const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。
eq_ref  const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。
ref  连接不能基于关键字选择单个行,可能查找 到多个符合条件的行。 叫做 ref 是因为索引要 跟某个参考值相比较。这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值
ref_or_null  如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找。
index_merge  说明索引合并优化被使用了。
unique_subquery  在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr)
index_subquery  在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr)
range  只检索给定范围的行,使用一个索引来选择 行。key 列显示使用了哪个索引。当使用=、 、>、>=、、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range。
index  全表扫描,只是扫描表的时候按照索引次序 进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。
all  最坏的情况,从头到尾全表扫描。

说明
possible_keys  指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。

        

说明
key  MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引

         

说明
key_len  使用的索引的长度。在不损失精确性的情况 下,长度越短越好。

         

说明
ref  显示索引的哪一列被使用了

         

说明
rows  MYSQL 认为必须检查的用来返回请求数据的行数

         

说明
rows  MYSQL 认为必须检查的用来返回请求数据的行数

        extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。         

extra 项 说明
Using filesort  表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序”
Using temporary  表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。

                                                                                            

       下面来举一个例子来说明下 explain 的用法。 

       先来一张表:

CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,`author_id` int(10) unsigned NOT NULL,`category_id` int(10) unsigned NOT NULL,`views` int(10) unsigned NOT NULL,`comments` int(10) unsigned NOT NULL,`title` varbinary(255) NOT NULL,`content` text NOT NULL,PRIMARY KEY (`id`));

      再插几条数据:

INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(1, 1, 1, 1, '1', '1'),(2, 2, 2, 2, '2', '2'),(1, 1, 3, 3, '3', '3');


       需求:
       查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。


       先查查试试看:

EXPLAINSELECT author_idFROM `article`WHERE category_id = 1 AND comments > 1ORDER BY views DESCLIMIT 1/G

       看看部分输出结果:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: article         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 3        Extra: Using where; Using filesort1 row in set (0.00 sec)


       很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。

       嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。

ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );


       结果有了一定好转,但仍然很糟糕:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: article         type: rangepossible_keys: x          key: x      key_len: 8          ref: NULL         rows: 1        Extra: Using where; Using filesort1 row in set (0.00 sec)


       type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
       

       那么我们需要抛弃 comments,删除旧索引:

 DROP INDEX x ON article;

      然后建立新索引:

ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;

      接着再运行查询:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: article         type: refpossible_keys: y          key: y      key_len: 4          ref: const         rows: 1        Extra: Using where1 row in set (0.00 sec)


      可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。

      再来看一个多表查询的例子。

      首先定义 3个表 class 和 room。

CREATE TABLE IF NOT EXISTS `class` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`id`));CREATE TABLE IF NOT EXISTS `book` (`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`bookid`));CREATE TABLE IF NOT EXISTS `phone` (`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,`card` int(10) unsigned NOT NULL,PRIMARY KEY (`phoneid`)) engine = innodb;

     然后再分别插入大量数据。插入数据的php脚本:

<?php$link = mysql_connect("localhost","root","870516");mysql_select_db("test",$link);for($i=0;$i<10000;$i++){    $j   = rand(1,20);    $sql = " insert into class(card) values({$j})";    mysql_query($sql);}for($i=0;$i<10000;$i++){    $j   = rand(1,20);    $sql = " insert into book(card) values({$j})";    mysql_query($sql);}for($i=0;$i<10000;$i++){    $j   = rand(1,20);    $sql = " insert into phone(card) values({$j})";    mysql_query($sql);}mysql_query("COMMIT");?>


     然后来看一个左连接查询:

explain select * from class left join book on class.card = book.card/G

     分析结果是:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: 2 rows in set (0.00 sec)

       显然第二个 ALL 是需要我们进行优化的。
       

       建立个索引试试看:

ALTER TABLE `book` ADD INDEX y ( `card`);
*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: refpossible_keys: y          key: y      key_len: 4          ref: test.class.card         rows: 1000        Extra: 2 rows in set (0.00 sec)


       可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
       删除旧索引:

DROP INDEX y ON book;

       建立新索引。

ALTER TABLE `class` ADD INDEX x ( `card`);

结果

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: 2 rows in set (0.00 sec)


基本无变化。
       然后来看一个右连接查询:

explain select * from class right join book on class.card = book.card;


      分析结果是:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: class         type: refpossible_keys: x          key: x      key_len: 4          ref: test.book.card         rows: 1000        Extra: 2 rows in set (0.00 sec)


优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。

       删除旧索引:

DROP INDEX x ON class;

       建立新索引。

ALTER TABLE `book` ADD INDEX y ( `card`);

结果

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: 2 rows in set (0.00 sec)


基本无变化。      最后来看看 inner join 的情况:

explain select * from class inner join book on class.card = book.card;


      结果:

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: class         type: refpossible_keys: x          key: x      key_len: 4          ref: test.book.card         rows: 1000        Extra: 2 rows in set (0.00 sec)

      删除旧索引:

DROP INDEX y ON book;


      结果

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: 2 rows in set (0.00 sec)

      建立新索引。

ALTER TABLE `class` ADD INDEX x ( `card`);

结果

*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: 2 rows in set (0.00 sec)

综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。

我们再来看看三表查询的例子

添加一个新索引:

 
ALTER TABLE `phone` ADD INDEX z ( `card`);ALTER TABLE `book` ADD INDEX y ( `card`);
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: class         type: ALLpossible_keys: NULL          key: NULL      key_len: NULL          ref: NULL         rows: 20000        Extra: *************************** 2. row ***************************           id: 1  select_type: SIMPLE        table: book         type: refpossible_keys: y          key: y      key_len: 4          ref: test.class.card         rows: 1000        Extra: *************************** 3. row ***************************           id: 1  select_type: SIMPLE        table: phone         type: refpossible_keys: z          key: z      key_len: 4          ref: test.book.card         rows: 260        Extra: Using index3 rows in set (0.00 sec)


后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。
       MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
MySQL與Sqlite有何不同?MySQL與Sqlite有何不同?Apr 24, 2025 am 12:12 AM

MySQL和SQLite的主要區別在於設計理念和使用場景:1.MySQL適用於大型應用和企業級解決方案,支持高性能和高並發;2.SQLite適合移動應用和桌面軟件,輕量級且易於嵌入。

MySQL中的索引是什麼?它們如何提高性能?MySQL中的索引是什麼?它們如何提高性能?Apr 24, 2025 am 12:09 AM

MySQL中的索引是數據庫表中一列或多列的有序結構,用於加速數據檢索。 1)索引通過減少掃描數據量提升查詢速度。 2)B-Tree索引利用平衡樹結構,適合範圍查詢和排序。 3)創建索引使用CREATEINDEX語句,如CREATEINDEXidx_customer_idONorders(customer_id)。 4)複合索引可優化多列查詢,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。 5)使用EXPLAIN分析查詢計劃,避

說明如何使用MySQL中的交易來確保數據一致性。說明如何使用MySQL中的交易來確保數據一致性。Apr 24, 2025 am 12:09 AM

在MySQL中使用事務可以確保數據一致性。 1)通過STARTTRANSACTION開始事務,執行SQL操作後用COMMIT提交或ROLLBACK回滾。 2)使用SAVEPOINT可以設置保存點,允許部分回滾。 3)性能優化建議包括縮短事務時間、避免大規模查詢和合理使用隔離級別。

在哪些情況下,您可以選擇PostgreSQL而不是MySQL?在哪些情況下,您可以選擇PostgreSQL而不是MySQL?Apr 24, 2025 am 12:07 AM

選擇PostgreSQL而非MySQL的場景包括:1)需要復雜查詢和高級SQL功能,2)要求嚴格的數據完整性和ACID遵從性,3)需要高級空間功能,4)處理大數據集時需要高性能。 PostgreSQL在這些方面表現出色,適合需要復雜數據處理和高數據完整性的項目。

如何保護MySQL數據庫?如何保護MySQL數據庫?Apr 24, 2025 am 12:04 AM

MySQL數據庫的安全可以通過以下措施實現:1.用戶權限管理:通過CREATEUSER和GRANT命令嚴格控制訪問權限。 2.加密傳輸:配置SSL/TLS確保數據傳輸安全。 3.數據庫備份和恢復:使用mysqldump或mysqlpump定期備份數據。 4.高級安全策略:使用防火牆限制訪問,並啟用審計日誌記錄操作。 5.性能優化與最佳實踐:通過索引和查詢優化以及定期維護兼顧安全和性能。

您可以使用哪些工具來監視MySQL性能?您可以使用哪些工具來監視MySQL性能?Apr 23, 2025 am 12:21 AM

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL與SQL Server有何不同?MySQL與SQL Server有何不同?Apr 23, 2025 am 12:20 AM

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在哪些情況下,您可以選擇SQL Server而不是MySQL?在哪些情況下,您可以選擇SQL Server而不是MySQL?Apr 23, 2025 am 12:20 AM

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用