模型評估是深度學習和機器學習中非常重要的一部分,用於衡量模型的性能和效果。本文將逐步分解混淆矩陣,準確性,精確度,回想率和F1分數
混淆矩陣
#混淆矩陣用於評估模型在分類問題中的表現,它是一個展示模型對樣本分類情況的表格。行代表實際類別,列代表預測類別。對於二分類問題,混淆矩陣的結構如下所示:
- #True Positive (TP): 實際上為正例,模型預測為正例的樣本數,模型正確辨識正面實例的能力。較高的TP通常是可取的
- False Negative (FN): 實際為正例,模型預測為負例的樣本數,根據應用程式的不同,這可能是關鍵的(例如,未能偵測到安全威脅)。
- False Positive (FP): 實際上為負例,模型預測為正例的樣本數,強調模型在不應該預測為正的情況下預測為正的情況,這可能會產生取決於應用的後果(例如,醫療診斷中不必要的治療)
- True Negative (TN): 實際為負例,模型預測為負例的樣本數,反映模型正確辨識否定實例的能力。通常需要更高的TN
初學者看起來很亂,但實際上這很簡單。後面的Negative/Positive是模型預測值,前面的True/False是模型預測的準確度。例如,True Negative表示模型預測為Negative且與實際值相符,即預測正確。這樣就容易理解了。以下是一個簡單的混淆矩陣:
from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # Example predictions and true labels y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0] y_pred = [1, 0, 1, 0, 0, 1, 0, 1, 1, 1] # Create a confusion matrix cm = confusion_matrix(y_true, y_pred) # Visualize the blueprint sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Predicted 0", "Predicted 1"], yticklabels=["Actual 0", "Actual 1"]) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show()
當你想強調正確的預測和整體準確度時,使用TP和TN。當你想了解你的模型所犯的錯誤類型時,使用FP和FN。例如,在誤報成本很高的應用程式中,最小化誤報可能是至關重要的。
舉個例子,我們來談談垃圾郵件分類器。混淆矩陣可以幫助我們了解該分類器正確識別了多少封垃圾郵件,以及錯誤地將多少封非垃圾郵件標記為垃圾郵件
基於混淆矩陣,可以計算許多其他評估指標,例如準確度、精確度、召回率和F1分數。
Accuracy
#根據我們上面的總結,計算的是能夠正確預測的的比例,分子是TP和TN都是True,也就是模型預測對了的總數
Precision
# #可以看到公式,他計算的是Positive 的佔比,也就是說數據中所有Positive的,正確預測對了有多少,所以精確度Precision又被稱作查準率
在誤報有重大後果或成本的情況下,這一點變得非常重要。以醫學診斷模型為例,精確度的確保確保只有真正需要治療的人接受治療
#Recall
回收率,又稱為敏感度或真陽性率,是指模型捕捉到所有正類實例的能力
#從公式中可以看出,它的主要目的是計算模型所捕捉的實際正例的數量,也就是正例的比例。因此,Recall又被稱為查全率
F1 Score
#F1分數的計算公式為: F1 = 2 * (精確度 * 召回率) / (精確度 召回率) 其中,精確度是指模型預測為正例的樣本中,實際為正例的比例;召回率是指模型正確預測為正例的樣本數佔所有實際為正例的樣本數的比例。 F1分數是精確度和召回率的調和平均值,它能夠綜合考慮模型的準確性和全面性,以評估模型的表現
# In this article, we introduced the confusion matrix, accuracy, precision, recall and F1 score in detail, and pointed out that these indicators can effectively evaluate and Improve model performanceSummary
以上是一文讀懂分類模型評估指標的詳細內容。更多資訊請關注PHP中文網其他相關文章!

AI驅動的財務報告:通過自然語言產生革新見解 在當今動態的業務環境中,準確及時的財務分析對於戰略決策至關重要。 傳統財務報告

Google DeepMind的乒乓球機器人:體育和機器人技術的新時代 巴黎2024年奧運會可能已經結束,但是由於Google DeepMind,運動和機器人技術的新時代正在興起。 他們的開創性研究(“實現人類水平的競爭

雙子座閃光燈1.5解鎖效率和可伸縮性:燒瓶食物視覺webapp 在快速發展的AI景觀中,效率和可擴展性至關重要。 開發人員越來越多地尋求高性能模型,以最大程度地減少成本和延遲

利用LlamainDex的AI特工的力量:逐步指南 想像一下,一個私人助理了解您的要求並完美地執行它們,無論是快速計算還是檢索最新的市場新聞。本文探索

Jupyter Notebook (.ipynb) 文件廣泛用於數據分析、科學計算和交互式編碼。雖然這些 Notebook 非常適合開發和與其他數據科學家共享代碼,但有時您需要將其轉換為更普遍易讀的格式,例如 PDF。本指南將引導您逐步了解將 .ipynb 文件轉換為 PDF 的各種方法,以及技巧、最佳實踐和故障排除建議。 目錄 為什麼將 .ipynb 轉換為 PDF? 將 .ipynb 文件轉換為 PDF 的方法 使用 Jupyter Notebook UI 使用 nbconve

介紹 大型語言模型(LLM)正在徹底改變自然語言處理,但它們的巨大規模和計算要求限制了部署。 量化是一種縮小模型和降低計算成本的技術,是至關重要的

介紹 本指南探討了用於Web自動化和測試的Selenium和Python的強大組合。 Selenium可自動化瀏覽器交互,從而顯著提高了大型Web應用程序的測試效率。 本教程重點o


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver CS6
視覺化網頁開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中