【背景】
某业务数据库load 报警异常,cpu usr 达到30-40 ,居高不下。使用工具查看数据库正在执行的sql ,排在前面的大部分是:
代码如下:
SELECT id, cu_id, name, info, biz_type, gmt_create, gmt_modified,start_time, end_time, market_type, back_leaf_category,item_status,picuture_url FROM relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20;
表的数据量大致有36w左右,该sql是一个非常典型的排序+分页查询:order by col limit N,OFFSET M , MySQL 执行此类sql时需要先扫描到N行,然后再去取 M行。对于此类大数据量的排序操作,取前面少数几行数据会很快,但是越靠后,sql的性能就会越差,因为N越大,MySQL 需要扫描不需要的数据然后在丢掉,这样耗费大量的时间。
【分析】
针对limit 优化有很多种方式,
1 前端加缓存,减少落到库的查询操作
2 优化SQL
3 使用书签方式 ,记录上次查询最新/大的id值,向后追溯 M行记录。
4 使用Sphinx 搜索优化。
对于第二种方式 我们推荐使用"延迟关联"的方法来优化排序操作,何谓"延迟关联" :通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。
【解决】
根据延迟关联的思路,修改SQL 如下:
优化前
代码如下:
root@xxx 12:33:48>explain SELECT id, cu_id, name, info, biz_type, gmt_create, gmt_modified,start_time, end_time, market_type, back_leaf_category,item_status,picuture_url FROM relation where biz_type =\'0\' AND end_time >=\'2014-05-29\' ORDER BY id asc LIMIT 149420 ,20;
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
| 1 | SIMPLE | relation | range | ind_endtime | ind_endtime | 9 | NULL | 349622 | Using where; Using filesort |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
1 row in set (0.00 sec)
其执行时间:
优化后:
代码如下:
SELECT a.* FROM relation a, (select id from relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20 ) b where a.id=b.id
代码如下:
root@xxx 12:33:43>explain SELECT a.* FROM relation a, (select id from relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20 ) b where a.id=b.id;
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| 1 | PRIMARY |
| 1 | PRIMARY | a | eq_ref | PRIMARY | PRIMARY | 8 | b.id | 1 | |
| 2 | DERIVED | relation | index | ind_endtime | PRIMARY | 8 | NULL | 733552 | |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
3 rows in set (0.36 sec)
执行时间:
优化后 执行时间 为原来的1/3 。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了mysql高级篇的一些问题,包括了索引是什么、索引底层实现等等问题,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能