搜尋
首頁資料庫mysql教程探究MySQL优化器对索引和JOIN顺序的选择_MySQL

本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序。表结构和数据准备参考本文最后部分"测试环境"。这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各个组件(这是另一个话题)。

   我们知道,MySQL优化器只有两个自由度:顺序选择;单表访问方式;这里将详细剖析下面的SQL,看看MySQL优化器如何做出每一步的选择。

explain
select *
from
 employee as A,department as B
where
   A.LastName = 'zhou'
 and B.DepartmentID = A.DepartmentID
 and B.DepartmentName = 'TBX';

1. 可能的选择

   这里看到JOIN的顺序可以是A|B或者B|A,单表访问方式也有多种,对于A表可以选择:全表扫描和索引`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)。对于B也有三个选择:全表扫描、索引IND_D、IND_DN。
2. MySQL优化器如何做
2.1 概述

   MySQL优化器主要工作包括以下几部分:Query Rewrite(包括Outer Join转换等)、const table detection、range analysis、JOIN optimization(顺序和访问方式选择)、plan refinement。这个案例从range analysis开始。
2.2 range analysis

   这部分包括所有Range和index merge成本评估(参考1 参考2)。这里,等值表达式也是一个range,所以这里会评估其成本,计算出found records(表示对应的等值表达式,大概会选择出多少条记录)。

   本案例中,range analysis会针对A表的条件A.LastName = 'zhou'和B表的B.DepartmentName = 'TBX'分别做分析。其中:

表A A.LastName = 'zhou' found records: 51
表B B.DepartmentName = 'TBX' found records: 1

   这两个条件都不是range,但是这里计算的值仍然会存储,在后面的ref访问方式评估的时候使用。这里的值是根据records_in_range接口返回,而对于InnoDB每次调用这个函数都会进行一次索引页的采样,这是一个很消耗性能的操作,对于很多其他的关系数据库是使用"直方图"的统计数据来避免这次操作(相信MariaDB后续版本也将实现直方图统计信息)。
2.3 顺序和访问方式的选择:穷举

   MySQL通过枚举所有的left-deep树(也可以说所有的left-deep树就是整个MySQL优化器的搜索空间),来找到最优的执行顺序和访问方式。
2.3.1 排序

   优化器先根据found records对所有表进行一个排序,记录少的放前面。所以,这里顺序是B、A。
2.3.2 greedy search

   当表的数量较少(少于search_depth,默认是63)的时候,这里直接蜕化为一个穷举搜索,优化器将穷举所有的left-deep树找到最优的执行计划。另外,优化器为了减少因为搜索空间庞大带来巨大的穷举消耗,所以使用了一个"偷懒"的参数prune_level(默认打开),具体如何"偷懒",可以参考JOIN顺序选择的复杂度。不过至少需要有三个表以上的关联才会有"偷懒",所以本案例不适用。
2.3.3 穷举

   JOIN的第一个表可以是:A或者B;如果第一个表选择了A,第二个表可以选择B;如果第一个表选择了B,第二个表可以选择A;

   因为前面的排序,B表的found records更少,所以JOIN顺序穷举时的第一个表先选择B(这个是有讲究的)。

(*) 选择第一个JOIN的表为B
  (**) 确定B表的访问方式
    因为B表为第一个表,所以无法使用索引IND_D(B.DepartmentID = A.DepartmentID),而只能使用IND_DN(B.DepartmentName = 'TBX')
      使用IND_DN索引的成本计算:1.2;其中IO成本为1。
      是否使用全表扫描:这里会比较使用索引的IO成本和全表扫描的IO成本,前者为1,后者为2;所以忽略全表扫描
    所以,B表的访问方式ref,使用索引IND_D

  (**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
  (**) 将A表加入JOIN,并确定其访问方式
    可以使用的索引为:`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)
    依次计算使用索引IND_L_D、IND_DID的成本:
    (***) IND_L_D A.LastName = 'zhou'
          在range analysis阶段给出了A.LastName = 'zhou'对应的记录约为:51。
          所以,计算IO成本为:51;ref做IO成本计算时会做一次修正,将其修正为worst_seek(参考)
          修正后IO成本为:15,总成本为:25.2
    (***) IND_DID B.DepartmentID = A.DepartmentID
          这是一个需要知道前面表的结果,才能计算的成本。所以range analysis是无法分析的
          这里,我们看到前面表为B,found_record是1,所以A.DepartmentID只需要对应一条记录就可以了
          因为具体取值不知道,也没有直方图,所以只能简单依据索引统计信息来计算:
            索引IND_DID的列A.DepartmentID的Cardinality为1349,全表记录数为1349
            所以,每一个值对应一条记录,而前面表B只有一条记录,所以这里的found_record计算为1*1 = 1
            所以IO成本为:1,总成本为1.2
    (***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
  (**) 确定A使用索引IND_DID,访问方式为ref
  (**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4

(*) 选择第一个JOIN的表为A
  (**) 确定A表的访问方式
       因为A表是第一个表,所以无法使用索引`IND_DID`(B.DepartmentID = A.DepartmentID)
       那么只能使用索引`IND_L_D`(A.LastName = 'zhou')
         使用IND_L_D索引的成本计算,总成本为25.2;参考前面计算;
  (**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序
       所以,这次穷举搜索到此结束

   把上面的过程简化如下:

(*) 选择第一个JOIN的表为B
  (**) 确定B表的访问方式
  (**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
  (**) 将A表加入JOIN,并确定其访问方式
    (***) IND_L_D A.LastName = 'zhou'
    (***) IND_DID B.DepartmentID = A.DepartmentID
    (***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
  (**) 确定A使用索引IND_DID,访问方式为ref
  (**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4

(*) 选择第一个JOIN的表为A
  (**) 确定A表的访问方式
  (**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序

   至此,MySQL优化器就确定了所有表的最佳JOIN顺序和访问方式。
3. 测试环境

MySQL: 5.1.48-debug-log innodb plugin 1.0.9

CREATE TABLE `department` (
 `DepartmentID` int(11) DEFAULT NULL,
 `DepartmentName` varchar(20) DEFAULT NULL,
 KEY `IND_D` (`DepartmentID`),
 KEY `IND_DN` (`DepartmentName`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;

CREATE TABLE `employee` (
 `LastName` varchar(20) DEFAULT NULL,
 `DepartmentID` int(11) DEFAULT NULL,
 KEY `IND_L_D` (`LastName`),
 KEY `IND_DID` (`DepartmentID`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;

for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done

for i in `seq 1 50` ; do mysql -vvv -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 200` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),27760)'; done
for i in `seq 1 1` ; do mysql -vvv -uroot test -e 'insert into department values (27760,"TBX")'; done

show index from employee;
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| employee |     1 | IND_L_D |      1 | LastName   | A     |    1349 |   NULL | NULL  | YES | BTREE   |     |
| employee |     1 | IND_DID |      1 | DepartmentID | A     |    1349 |   NULL | NULL  | YES | BTREE   |     |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+

show index from department;
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| Table   | Non_unique | Key_name | Seq_in_index | Column_name  | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| department |     1 | IND_D  |      1 | DepartmentID  | A     |    1001 |   NULL | NULL  | YES | BTREE   |     |
| department |     1 | IND_DN  |      1 | DepartmentName | A     |    1001 |   NULL | NULL  | YES | BTREE   |     |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+

4. 构造一个Bad case

   因为关联条件中MySQL使用索引统计信息做成本预估,所以数据分布不均匀的时候,就容易做出错误的判断。简单的我们构造下面的案例:

   表和索引结构不变,按照下面的方式构造数据:

for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done

for i in `seq 1 1` ; do mysql -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 10` ; do mysql -uroot test -e 'insert into department values (27760,"TBX")'; done
for i in `seq 1 1000` ; do mysql -uroot test -e 'insert into department values (27760,repeat(char(65+rand()*58),rand()*20))';
done

explain
select *
from
 employee as A,department as B
where
   A.LastName = 'zhou'
 and B.DepartmentID = A.DepartmentID
 and B.DepartmentName = 'TBX';
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| id | select_type | table | type | possible_keys  | key   | key_len | ref         | rows | Extra    |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| 1 | SIMPLE   | A   | ref | IND_L_D,IND_DID | IND_L_D | 43   | const        |  1 | Using where |
| 1 | SIMPLE   | B   | ref | IND_D,IND_DN  | IND_D  | 5    | test.A.DepartmentID |  1 | Using where |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+

   可以看到这里,MySQL执行计划对表department使用了索引IND_D,那么A表命中一条记录为(zhou,27760);根据B.DepartmentID=27760将返回1010条记录,然后根据条件DepartmentName = 'TBX'进行过滤。

   这里可以看到如果B表选择索引IND_DN,效果要更好,因为DepartmentName = 'TBX'仅仅返回10条记录,再根据条件A.DepartmentID=B.DepartmentID过滤之。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
解釋InnoDB緩衝池及其對性能的重要性。解釋InnoDB緩衝池及其對性能的重要性。Apr 19, 2025 am 12:24 AM

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL與其他編程語言:一種比較MySQL與其他編程語言:一種比較Apr 19, 2025 am 12:22 AM

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

學習MySQL:新用戶的分步指南學習MySQL:新用戶的分步指南Apr 19, 2025 am 12:19 AM

MySQL值得學習,因為它是強大的開源數據庫管理系統,適用於數據存儲、管理和分析。 1)MySQL是關係型數據庫,使用SQL操作數據,適合結構化數據管理。 2)SQL語言是與MySQL交互的關鍵,支持CRUD操作。 3)MySQL的工作原理包括客戶端/服務器架構、存儲引擎和查詢優化器。 4)基本用法包括創建數據庫和表,高級用法涉及使用JOIN連接表。 5)常見錯誤包括語法錯誤和權限問題,調試技巧包括檢查語法和使用EXPLAIN命令。 6)性能優化涉及使用索引、優化SQL語句和定期維護數據庫。

MySQL:初學者的基本技能MySQL:初學者的基本技能Apr 18, 2025 am 12:24 AM

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL:結構化數據和關係數據庫MySQL:結構化數據和關係數據庫Apr 18, 2025 am 12:22 AM

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL:解釋的關鍵功能和功能MySQL:解釋的關鍵功能和功能Apr 18, 2025 am 12:17 AM

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

SQL的目的:與MySQL數據庫進行交互SQL的目的:與MySQL數據庫進行交互Apr 18, 2025 am 12:12 AM

SQL用於與MySQL數據庫交互,實現數據的增、刪、改、查及數據庫設計。 1)SQL通過SELECT、INSERT、UPDATE、DELETE語句進行數據操作;2)使用CREATE、ALTER、DROP語句進行數據庫設計和管理;3)複雜查詢和數據分析通過SQL實現,提升業務決策效率。

初學者的MySQL:開始數據庫管理初學者的MySQL:開始數據庫管理Apr 18, 2025 am 12:10 AM

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具