數學,作為科學的基石,一直以來都是研究和創新的關鍵領域。
最近,普林斯頓大學等七家機構聯合發布了一個專門用於數學的大語言模型LLEMMA,性能媲美谷歌Minerva 62B,並公開了其模型、數據集和代碼,為數學研究帶來了前所未有的機會和資源。
論文網址:https://arxiv.org/abs/2310.10631
資料集的連結網址為:https://huggingface.co/datasets/EleutherAI/proof-pile-2
專案網址:https://github.com/EleutherAI/math-lm 需要重寫的是:
LLEMMA承襲了Code Llama的基礎,在Proof-Pile-2上進行了預訓練。
Proof-Pile-2,一個龐大的混合資料集,包含著550億token的訊息,其中包括科學論文、富含數學內容的網頁資料以及數學程式碼。
這個資料集的一部分,Algebraic Stack,更匯集了來自17種語言的11B資料集,涵蓋了數值、符號和數學證明。
擁有7億和34億個參數,在MATH基準測試中表現卓越,超越了所有已知的開源基礎模型。
在與Google Research開發的專門用於數學的封閉模型相比,參數量只有Minerva 62B一半的條件下,Llemma 34B獲得了幾乎相同的性能。
Llemma超越了Minerva在參數基礎上解決問題的效能,它利用計算工具和形式定理證明,為數學問題的解決提供了無限的可能性
它能夠方便地使用Python解釋器和形式證明器,進一步展示了它在解決數學問題方面的能力
由於對形式證明資料的特別重視,Algebraic Stack成為了第一個展現出少樣本定理證明能力的開放基礎模型
圖
研究人員也開放共享了LLEMMA的所有訓練資料和程式碼。與以往的數學模型不同,LLEMMA是一個開源的、開放共享的模型,為整個科研社群敞開大門。
研究人員試圖量化模型記憶效果,結果令人驚訝的是,他們發現Llemma對於訓練集中出現的問題並沒有變得更加準確。由於程式碼和數據是公開的,研究人員鼓勵其他人複製並擴展他們的分析
訓練資料和實驗配置
LLEMMA是一個專門用於數學的大型語言模型,它在Code Llama的基礎上繼續在Proof-Pile-2上進行預訓練。 Proof-Pile-2是一個包含科學論文、含有數學內容的網頁資料和數學程式碼的混合資料集,包含了550億個標記
AlgebraicStack的程式碼部分包含了11B的資料集,其中包括17種語言原始碼,覆蓋數值、符號和形式數學,並已公開發布
LLEMMA的每個模型都是由Code Llama進行初始化的。 Code Llama模型是僅包含解碼器的語言模型,它是從Llama 2進行初始化的
作者對Code Llama模型在Proof-Pile-2上進行了進一步的訓練,使用標準的自回歸語言建模目標。對於7B模型,作者進行了200B個標記的訓練,而對於34B模型,作者進行了50B個標記的訓練
評估方法和實驗結果
作者使用Proof-Pile-2對Code Llama進行繼續預訓練,並且在MATH和GSM8k等多個數學問題解決任務上對LLEMMA進行few-shot評估。
研究人員發現LLEMMA在這些任務上都有顯著的提升,並且能夠適應不同的問題類型和難度。
LLEMMA 34B在極高難度的數學問題中展示了比其他開放式基礎模型更強大的數學能力
在數學基準測試上,LLEMMA在Proof-Pile-2上的持續預訓練改善了五個數學基準測試的few-shot性能。
在GSM8k上,LLEMMA 34B的改進比Code Llama高出20個百分點,在MATH上高出13個百分點。而且,LLEMMA 7B也優於相似大小的專有的Minerva模型,證明了在Proof-Pile-2上進行預訓練能有效提高大模型的數學解題能力
在解決數學問題時,利用計算工具如Python等,LLEMMA在MATH Python和GSM8k Python任務上都比Code Llama更出色
#在使用MATH和GSM8k資料集時,LLEMMA的效能優於沒有使用工具時的效能
在數學證明任務中,LLEMMA表現出色
非正式到正式證明的任務目標是在給定一個正式陳述、一個非正式的LATEX陳述和一個非正式的LATEX證明的情況下,產生一個正式證明,然後透過證明助手進行驗證。
正式到正式證明則是透過產生一系列證明步驟(策略)來證明一個正式陳述。結果表明,LLEMMA在Proof-Pile-2上的持續預訓練改善了這兩個正式定理證明任務的few-shot表現。
LLEMMA不僅擁有令人矚目的效能、還開放了革命性的資料集、展現了驚人的問題解決能力。
開源共享的精神,標誌著數學界進入了一個新的時代。數學的未來在這裡,而我們每一個數學愛好者、研究者和教育者都將從中受益。
LLEMMA的出現為我們提供了前所未有的工具,讓數學問題的解決變得更有效率和創新。
此外,開放共享的概念也將促進全球科學研究社群更加深入的合作,共同推動科學的進步。
以上是普林斯頓開源34B數學模型:參數減半,效能媲美GoogleMinerva,使用550億Token進行專業資料訓練的詳細內容。更多資訊請關注PHP中文網其他相關文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。