本文經自動駕駛之心公眾號授權轉載,轉載請聯絡來源。
原標題:MotionLM: Multi-Agent Motion Forecasting as Language Modeling
論文連結:https://arxiv.org/pdf/2309.16534.pdf
#作者單位: Waymo
會議:ICCV 2023
#論文想法:
##對於自動駕駛車輛安全規劃來說,可靠地預測道路代理未來行為是至關重要的。本研究將連續軌跡表示為離散運動令牌序列,並將多智能體運動預測視為語言建模任務。我們提出的模型MotionLM有以下幾個優點:首先,它不需要使用錨點或顯式潛變數來最佳化學習多模態分佈。相反,我們利用標準的語言建模目標,最大化序列令牌的平均對數機率。其次,我們的方法避免了事後交互啟發法,其中個體代理軌跡生成是在交互評分之後進行的。相反,MotionLM在單一自回歸解碼過程中產生了互動式代理未來的聯合分佈。此外,模型的順序分解可以實現時間上的因果條件推論。我們提出的方法在Waymo Open Motion Dataset上取得了新的最先進性能,排名第一於互動式挑戰排行榜主要貢獻:
在這在篇文章中,我們將多智能體運動預測作為語言建模任務來討論。我們引入了時間因果解碼器,對經過因果語言建模損失訓練的離散運動令牌進行解碼本文將結合模型中的取樣和簡單的rollout 聚合方案,以提高聯合軌蹟的加權模式識別能力。我們透過Waymo Open Motion Dataset 互動預測挑戰中的實驗,證明了這項新的方法在排名聯合mAP 指標上提高了6%,達到了最先進的性能水平本文對本文的方法進行了廣泛的消融實驗,並對它的時間因果條件預測進行了分析,這在很大程度上是目前的聯合預測模型所不支持的。網路設計:
本文的目標是以一種通用的方式對多智能體互動上的分佈建模,這種分佈可以應用於不同的下游任務,包括最低限度的、聯合的和條件預測。為了實現這一目標,需要一個有表現力的生成框架,能夠捕捉到駕駛場景中的多種形態。此外,本文在這裡考慮保存時間依賴性;即,在本文的模型中,推理遵循一個有向無環圖,每個節點的父節點在時間上較早,子節點在時間上較晚,這使得條件預測更接近因果幹預,因為它消除了某些虛假的相關性,否則就會導致不服從時間因果關係。本文觀察到,不保留時間依賴關係的聯合模型可能在預測實際agent反應方面的能力有限,這是規劃中的關鍵用途。為此,本文利用了未來解碼器的自回歸分解,其中代理的運動tokens有條件地依賴所有先前採樣的tokens,並且軌跡按順序推出顏色梯度表示了從t = 0秒到t = 8秒的時間變化。聯合模式由綠色過渡到藍色,次聯合模式由橙色過渡到紫色的機率最大。我們觀察到了三種類型的交互:相鄰車道中的智能體會根據變換車道時間給予變換車道智能體讓行(左側),行人會根據車輛的進度走在過往車輛後面(中間),轉彎車輛要么會給過路的騎車人讓路(最可能的模式),要么會在騎車人接近之前轉彎(次要模式)(右側)
請看圖4。這張圖展示了聯合推出(左側)、幹預後因果貝葉斯網絡(中間)和因果條件反射(右側)的因果貝葉斯網絡表示
#實線表示時間上的因果相關性,而虛線表示因果訊息流。沒有時間依賴限制的模型將支持因果條件作用,但不支持時間因果條件作用,這在試圖預測agent反應時可能是有問題的。
實驗結果:
#Seff, A., Cera, B., Chen, D., Ng, M., Zhou, A., Nayakanti, N., Refaat, K. S., & Sapp, B. (2023). MotionLM: Multi-Agent Motion Forecasting as Language Modeling. ArXiv. /abs/2309.16534
原文連結:https://mp.weixin.qq.com/s/MTai0rA8PeNFuj7UjCfd6A
#以上是MotionLM:多智能體運動預測的語言建模技術的詳細內容。更多資訊請關注PHP中文網其他相關文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

禪工作室 13.0.1
強大的PHP整合開發環境