Python for NLP:如何自動擷取PDF檔案中的關鍵字?
在自然語言處理(NLP)中,關鍵字提取是一項重要的任務。它能夠從文本中識別最具代表性和資訊價值的單字或短語。本文將介紹如何使用Python提取PDF文件中的關鍵字,並附上具體的程式碼範例。
-
安裝依賴函式庫
在開始之前,我們需要安裝幾個必要的Python函式庫。這些庫將幫助我們處理PDF文件和進行關鍵字提取。請在終端機中執行以下命令安裝所需的庫:pip install PyPDF2 pip install nltk
-
導入庫和模組
在開始編寫程式碼之前,我們需要導入所需的庫和模組。以下是需要導入的庫和模組的範例程式碼:import PyPDF2 from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.probability import FreqDist
-
讀取PDF檔案
首先,我們需要用PyPDF2庫讀取PDF檔案。以下是讀取PDF檔案並將其轉換為文字的範例程式碼:def extract_text_from_pdf(file_path): pdf_file = open(file_path, 'rb') reader = PyPDF2.PdfFileReader(pdf_file) num_pages = reader.numPages text = "" for page in range(num_pages): text += reader.getPage(page).extract_text() return text
-
處理文字資料
在提取關鍵字之前,我們需要對文字資料進行一些預處理。這包括去除停用詞、分詞和計算出現頻率等。以下是範例程式碼:def preprocess_text(text): stop_words = set(stopwords.words('english')) tokens = word_tokenize(text.lower()) filtered_tokens = [token for token in tokens if token.isalnum() and token not in stop_words] fdist = FreqDist(filtered_tokens) return fdist
-
提取關鍵字
現在,我們可以使用預處理後的文字資料來提取關鍵字了。以下是範例程式碼:def extract_keywords(file_path, top_n): text = extract_text_from_pdf(file_path) fdist = preprocess_text(text) keywords = [pair[0] for pair in fdist.most_common(top_n)] return keywords
-
運行程式碼並列印結果
最後,我們可以運行程式碼並列印提取到的關鍵字。以下是範例程式碼:file_path = 'example.pdf' # 替换为你的PDF文件路径 top_n = 10 # 希望提取的关键词数量 keywords = extract_keywords(file_path, top_n) print("提取到的关键词:") for keyword in keywords: print(keyword)
透過上述步驟,我們成功地使用Python自動擷取了PDF檔案中的關鍵字。你可以根據自己的需求調整程式碼並提取出更多或更少的關鍵字。
以上是關於如何使用Python自動擷取PDF檔案中的關鍵字的簡短介紹和程式碼範例。希望本文對你在NLP中進行關鍵字提取有所幫助。如有任何問題,請隨時向我提問。
以上是Python for NLP:如何自動擷取PDF檔案中的關鍵字?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

禪工作室 13.0.1
強大的PHP整合開發環境

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用

Atom編輯器mac版下載
最受歡迎的的開源編輯器