搜尋
首頁科技週邊人工智慧微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

MR系統可以使用多個鏡頭,但在呈現影像時需要對齊影像。然而,影像對齊是一個具有挑戰性的問題。因此,在名為「利用角點和線條特徵進行影像對齊的方法」的專利申請中,微軟提出了一種解決方案

當然,業界早已存在利用角落特徵來進行影像對齊的方法。然而,在圖像中識別角並根據識別的角對齊圖像是一個耗時且計算密集型的操作。

微軟提出的是一種更有效的改進技術,可以實現更好的特徵匹配。發明主要介紹了使用角特徵和線特徵來執行視覺對齊的混合方法,而這種解決方案導致對齊過程中所需的約束更少,從而改進計算效率和特徵匹配。

微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

圖11示出一個範例環境1100,其中使用者正在使用頭顯相機1105和外部相機1110。如前所述,需要對齊從這兩個相機產生的影像內容。但環境1100可能是一個弱光環境,也可能是一個在熱梯度或對比方面具有低對比的環境。

例如,在深夜物體冷卻後,環境的溫度梯度可能通常是均勻的。在這種情況下,環境的溫度曲線或梯度可能低於特定的等溫閾值1115。在這種情況下,用於對齊內容的傳統技術可能會失效。微軟所描述的實施例為這類場景提供了解決方案。

微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

圖12示出可用於對齊影像的範例角檢測1200過程。圖12示出了由圖11的頭顯相機1105產生的第一影像1205,以及由外部相機1110產生的第二影像1210。

進行角檢測操作以識別影像中存在的「角」。舉例來說,可以透過實施例來辨識第一張影像中的角特徵。換句話說,可以在圖像中識別一組像素,確定這些像素集合對應於一個角

「角」是指具有非均勻強度的一個或多個像素,其具有相對於所述一個或多個像素水平定位的第一附近像素塊和相對於所述一個或多個像素垂直定位的第二個附近像素塊。換句話說,角定義為一組一個或多個與相對於像素集在X和Y方向相鄰角形成對比的像素。

辨識第一影像1205中的角特徵1215,也辨識第二影像1210中的角特徵。因此,成功辨識出角特徵1225。需要注意的是,角特徵1225與角特徵1215是相對應的

為了對齊影像內容,此實施例的任務是辨識1230個角的閾值。角的閾值數量必須相互對應。換句話說,必須識別在第一張影像1205中識別的多個角,並且必須與在第二張影像1210中識別的多個角相對應

如果滿足這些閾值,則實施例可以執行影像對齊操作以產生疊加影像1235,所述影像1235是其中對齊來自第二影像1210的內容,然後與來自第一個影像1205的相應內容覆蓋的影像。

進行角點偵測和對齊是一項計算密集型操作,如果偵測到的角點與影像之間的匹配不夠好,整個過程可能會失敗。例如,僅使用角點的方法,需要從一張影像中辨識出至少5個角點,然後與第二張影像中的對應角點進行比對。在低對比條件下,即使辨識出5個對應的角點也可能是一項挑戰

在識別足夠數量的角落之後,實施例然後使用運動模型識別3D旋轉,以便透過執行各種旋轉和轉換以使5個角落彼此對齊來將圖像內容從第一或第二圖像適配到另一圖像。執行這樣的對齊是計算密集型。

因此,我們需要減少只使用角方法時所存在的約束,而圖13則描述了這樣一種技術。

微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

在圖13中展示了角點和線點檢測1300的過程,這個過程包括了圖12中的角點檢測1200操作和線點檢測操作的組合。需要注意的是,角點偵測操作和線偵測操作是同時進行的

通常情況下,辨識影像中的對應的「線」比辨識角點更簡單,因此線偵測過程通常比角點偵測過程更快。由於這兩個過程可以並行運行,並且線檢測過程更快,因此添加線檢測過程不會對整體對齊過程的速度產生負面影響

透過合併使用線條來對齊影像,可以在對齊過程中使用更少的角,從而導致放鬆的約束和通常更容易對齊。特別是在低溫條件下,要求使用較少的角是非常有益的,因為很難找到和匹配角

「線」被定義為一組一個或多個像素,它們具有相對於一組或多個像素集的水平定位的第一附近像素塊的均勻強度,並且具有相對於一組或多個像素集的垂直定位的第二個附近像素塊的不均勻強度。或者,它們具有相對於一組或多個像素集的水平定位的第一個附近像素塊的不均勻強度,並且具有相對於一組或多個像素集的垂直定位的第二附近像素塊的均勻強度

在圖13中,展示了代表圖12中影像的第一個影像1305和第二個影像1310。圖13也展示了一種實作方法,可以偵測第一影像1305中的角特徵1315

在對第一影像1305進行角特徵的例檢測時,同時也會進行線特徵的檢測,就像線特徵1320和線特徵1325所示的那樣。一般來說,相較於可以偵測到的角的數量,我們能夠偵測到更多的線

對第二個影像1310執行角和線操作。為了說明,所述實施例識別角特徵1330。與角檢測操作並行,實施例同時檢測第二影像1310中的線,如線特徵1335和線特徵1340。

請注意,角特徵1330與角特徵1315相對應;線特徵1335與線特徵1320相對應。線特徵1340與線特徵1325相對應。實施例可以識別這些對應關係,然後產生或使用適合將這些特徵點彼此對齊的運動模型

根據發明原理,我們定義了第一個閾值為1345。第一個閾值是指必須在兩個影像中識別的相應角特徵的數量,以便對它們進行對齊。同時,我們也定義了第二個閾值為1350。第二個閾值是指必須在兩個影像中識別的相應行特徵的數量,以使它們對齊

第一閾值1345和第二閾值1350的滿足使實施例能夠對齊來自第一個影像1305和第二個影像1310的內容以產生疊加影像1355。值得注意的是,閾值通常是指必須識別的角和線的總數。

在了解執行線特徵檢測的便利性和速度之後,你可能會質疑為什麼實施例不僅依賴線檢測操作而避免執行角檢測操作。原因是因為在影像中偵測線條會導致孔徑問題。

微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

以下是重寫後的內容: 根據圖14,我們可以看到孔徑問題,即孔徑模糊度為1400。在圖14中,線段1405是整條線的一部分。孔徑模糊度1400指的是一條線的多個不同部分可能(但不正確地)與已識別的線段1405相關

例如,儘管線段1410實際上位於錯誤的位置或位置,但線段1410可能是與線段1405匹配的像素區塊。類似地,線段1415或線段1420可能包含可能映射或匹配線段1405中的像素的像素區塊。這樣的場景在對齊過程中引入了模糊性。

因此,依靠線檢測過程本身是不夠的技術。換句話說,依靠線和角的組合可以使實施例使用寬鬆的約束,從而提高計算效率。

微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊

範例流程流程1500在圖15中展示。最初,會取得一組影像,如頭戴式相機影像1505和外部相機影像1510。這些圖像可能是熱圖像。影像中的溫度梯度或對比度1520可能低於特定的對比度閾值1525。因此,在圖像中識別足夠數量的角可能相當困難。在這種情況下,可以利用混合方法檢測角和線的組合以實現對齊

將頭戴式相機影像1505和外部相機影像1510傳送到角度偵測器1530和線條偵測器1535中,這兩個偵測器同時運行,彼此之間沒有依賴關係

請注意,線偵測器1535在偵測線條時通常比角偵測器1530在偵測角度時更快。換句話說,線偵測器1535的延遲時間較角偵測器1530的延遲時間要短

角點偵測器1530分析所述兩個影像並辨識所述影像中的角點1545。類似地,線偵測器1535分析這兩個影像並識別影像中的線1550。然後,實施例透過在兩個影像內識別相應的角和線來執行對齊1555。

為了執行對齊,需要確定線和角的閾值數量。匹配閾值比識別角的數量或線的閾值更相關。然後,實施例將所辨識的角和線擬合到諸如運動模型的3D模型1560中。然後對模型1560進行模型擬合1565操作,以旋轉、平移和/或變換一幅影像,從而匹配或對齊另一幅影像中的對應角和線。

換句話說,當執行重投影操作時,實施例使用已識別的角落和線來對齊來自一個影像的內容與來自另一個影像的內容

相關專利:Microsoft Patent | Image alignment using corner and line features

名為「Image alignment using corner and line features」的微軟專利申請最初在2022年2月提交,並在日前由美國專利商標局公佈。

以上是微軟AR/VR專利提出利用角落、線條特徵進行多相機影像對齊的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:搜狐。如有侵權,請聯絡admin@php.cn刪除
微软深化与 Meta 的 AI 及 PyTorch 合作微软深化与 Meta 的 AI 及 PyTorch 合作Apr 09, 2023 pm 05:21 PM

微软宣布进一步扩展和 Meta 的 AI 合作伙伴关系,Meta 已选择 Azure 作为战略性云供应商,以帮助加速 AI 研发。在 2017 年,微软和 Meta(彼时还被称为 Facebook)共同发起了 ONNX(即 Open Neural Network Exchange),一个开放的深度学习开发工具生态系统,旨在让开发者能够在不同的 AI 框架之间移动深度学习模型。2018 年,微软宣布开源了 ONNX Runtime —— ONNX 格式模型的推理引擎。作为此次深化合作的一部分,Me

微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型Apr 04, 2023 pm 12:50 PM

OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。然而现存的剪枝方法大都只针对特定模型,特定任务,且需要很

超5800亿美元!微软谷歌神仙打架,让英伟达市值飙升,约为5个英特尔超5800亿美元!微软谷歌神仙打架,让英伟达市值飙升,约为5个英特尔Apr 11, 2023 pm 04:31 PM

ChatGPT在手,有问必答。你可知,与它每次对话的计算成本简直让人泪目。此前,分析师称ChatGPT回复一次,需要2美分。要知道,人工智能聊天机器人所需的算力背后烧的可是GPU。这恰恰让像英伟达这样的芯片公司豪赚了一把。2月23日,英伟达股价飙升,使其市值增加了700多亿美元,总市值超5800亿美元,大约是英特尔的5倍。在英伟达之外,AMD可以称得上是图形处理器行业的第二大厂商,市场份额约为20%。而英特尔持有不到1%的市场份额。ChatGPT在跑,英伟达在赚随着ChatGPT解锁潜在的应用案

苹果AIGC专利:可通过语音指令生成AR/VR虚拟场景苹果AIGC专利:可通过语音指令生成AR/VR虚拟场景Jul 16, 2023 pm 05:49 PM

去年2月,Meta曾展示过一种基于AIGC玩法的虚拟世界开发功能:BuilderBot,特点是可通过识别语音指令,就能在虚拟场景中生成对应的元素,可简化VR场景生成的难度。而在近期USPTO公布的一项苹果专利中,也指出了类似的概念,比如用户可命令Siri语音助手在物理场景中加入虚拟家具,并改变家具的颜色等等。据青亭网了解,该专利编号为US20230206912A1,内容主要描述了一系列新的Siri语音指令,可用来控制文字处理器(输入文字、修改字体等)、XR场景等等。虽然并非专为XR打造,但专利中

配置Linux系统以支持AR/VR和增强现实开发配置Linux系统以支持AR/VR和增强现实开发Jul 05, 2023 am 11:17 AM

配置Linux系统以支持AR/VR和增强现实开发引言:随着增强现实(AR)和虚拟现实(VR)技术的发展,越来越多的开发者开始关注这些新兴领域。为了进行AR/VR和增强现实开发,正确配置Linux系统非常重要。本文将为您介绍如何配置Linux系统以支持AR/VR和增强现实开发,并提供相应的代码示例。步骤一:安装必要的软件在开始之前,请确保您的Linux系统已经

微软专利为AR/VR光线投影校准干扰提出监控光源解决方案微软专利为AR/VR光线投影校准干扰提出监控光源解决方案Aug 25, 2023 pm 01:01 PM

(映维网Nweon2023年08月24日)XR设备通常包括耦合到左光束路径的左投影仪和耦合到右光束路径的右投影仪。左投影仪配置为生成左图像,然后将左图像通过左光束路径传播到用户的左眼。正确的投影仪被配置为生成正确的图像,然后正确的图像通过正确的光束路径传播到用户的右眼。这种XR设备的结构可能会因常规使用、温度变化和/或冲击而发生变化。当R设备的结构发生变化时,图像可能会失去视轴,无法正确对准。这个问题在眼镜形态的设备中可能会变得严重。有XR设备配置为投射校准图像,并使用校准图像来确定显示器是否正

微软推出AI工具Security Copilot,帮助网络安全人员应对威胁微软推出AI工具Security Copilot,帮助网络安全人员应对威胁Apr 04, 2023 pm 02:50 PM

近日微软推出了Security Copilot,这款新工具旨在通过AI助手简化网络安全人员的工作,帮助他们应对安全威胁。 网络安全人员往往要管理很多工具,和来自多个来源的海量数据。近日微软宣布推出了Security Copilot,这款新工具旨在通过AI助手简化网络安全人员的工作,帮助他们应对安全威胁。Copilot利用基于OpenAI的GPT-4最新技术,让网络安全人员能够就当前影响环境的安全问题提问并获得答案,甚至可以直接整合公司内部的知识,为团队提供有用的信息,从现有信息中进行学习,将当前

NLP模型读不懂人话?微软AdaTest挑错效率高五倍NLP模型读不懂人话?微软AdaTest挑错效率高五倍Apr 09, 2023 pm 04:11 PM

​自然语言处理(NLP)模型读不懂人话、将文本理解为相反的意思,是业界顽疾了。 现在微软表示,开发出解决此弊的方法。微软开发AdaTest方法来测试NLP模型 可作为跨越各种应用基础的大型模型,或称平台模型的进展已经大大改善了AI处理自然语言的能力。但自然语言处理(NLP)模型仍然远不完美,有时会以令人尴尬的方式暴露缺陷。 例如有个顶级的商用模型,将葡萄牙语中的「我不推荐这道菜」翻译成英语中的「我非常推荐这道菜」。 这些失败之所以继续存在,部分原因是寻找和修复NLP模型中的错误很难,以至于严重的

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。