如何用Python寫隨機森林演算法?
隨機森林是一種強大的機器學習方法,常用於分類和迴歸問題。該演算法透過隨機選擇特徵和隨機抽樣樣本,建立多個決策樹,並將它們的結果整合來做出預測。
本文將介紹如何使用Python編寫隨機森林演算法,並提供具體的程式碼範例。
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score
data = pd.read_csv("iris.csv")
# 将特征和标签分开 X = data.drop('species', axis=1) y = data['species'] # 将分类变量转换成数值变量 y = pd.factorize(y)[0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train)
y_pred = rf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy)
以上就是用 Python 寫隨機森林演算法的完整程式碼範例。透過這些程式碼,我們可以輕鬆地建立和訓練隨機森林模型,並進行預測和效能評估。
總結:
隨機森林是一種強大的機器學習方法,能夠有效地解決分類和迴歸問題。使用Python編寫隨機森林演算法非常簡單,只需要匯入對應的函式庫、載入資料、預處理資料、分割訓練集和測試集、建置和訓練模型,最後進行預測和效能評估。以上程式碼範例可以幫助讀者快速上手隨機森林演算法的編寫和應用。
以上是如何用Python寫隨機森林演算法?的詳細內容。更多資訊請關注PHP中文網其他相關文章!