首頁 >後端開發 >C++ >在C/C++中寫出求解模方程式的程式?

在C/C++中寫出求解模方程式的程式?

WBOY
WBOY轉載
2023-09-12 14:21:031246瀏覽

在C/C++中寫出求解模方程式的程式?

在這裡,我們將看到一個與模方程式相關的有趣問題。假設我們有兩個值A和B。我們必須找到變數X可以取的可能值的數量,使得(A mod X) = B成立。

假設A為26,B為2。所以X的首選值會是{3, 4, 6, 8, 12, 24},因此計數為6。這就是答案。讓我們看一下演算法以更好地理解。

演算法

possibleWayCount(a, b) −

begin
   if a = b, then there are infinite solutions
   if a < b, then there are no solutions
   otherwise div_count := find_div(a, b)
   return div_count
end

find_div(a, b) -

begin
   n := a &ndash; b
   div_count := 0
   for i in range 1 to square root of n, do
      if n mode i is 0, then
         if i > b, then
            increase div_count by 1
         end if
         if n / i is not same as i and (n / i) > b, then
            increase div_count by 1
         end if
      end if
   done
end

Example

的中文翻譯為:

範例

#include <iostream>
#include <cmath>
using namespace std;
int findDivisors(int A, int B) {
   int N = (A - B);
   int div_count = 0;
   for (int i = 1; i <= sqrt(N); i++) {
      if ((N % i) == 0) {
         if (i > B)
            div_count++;
         if ((N / i) != i && (N / i) > B) //ignore if it is already counted
            div_count++;
      }
   }
   return div_count;
}
int possibleWayCount(int A, int B) {
   if (A == B) //if they are same, there are infinity solutions
      return -1;
   if (A < B) //if A < B, then there are two possible solutions
      return 0;
   int div_count = 0;
   div_count = findDivisors(A, B);
   return div_count;
}
void possibleWay(int A, int B) {
   int sol = possibleWayCount(A, B);
   if (sol == -1)
      cout << "For A: " << A << " and B: " << B << ", X can take infinite values greater than " << A;
   else
      cout << "For A: " << A << " and B: " << B << ", X can take " << sol << " values";
}
int main() {
   int A = 26, B = 2;
   possibleWay(A, B);
}

輸出

For A: 26 and B: 2, X can take 6 values
#

以上是在C/C++中寫出求解模方程式的程式?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:tutorialspoint.com。如有侵權,請聯絡admin@php.cn刪除