在這裡,我們將看到一個與模方程式相關的有趣問題。假設我們有兩個值A和B。我們必須找到變數X可以取的可能值的數量,使得(A mod X) = B成立。
假設A為26,B為2。所以X的首選值會是{3, 4, 6, 8, 12, 24},因此計數為6。這就是答案。讓我們看一下演算法以更好地理解。
possibleWayCount(a, b) −
begin if a = b, then there are infinite solutions if a < b, then there are no solutions otherwise div_count := find_div(a, b) return div_count end
find_div(a, b) -
begin n := a – b div_count := 0 for i in range 1 to square root of n, do if n mode i is 0, then if i > b, then increase div_count by 1 end if if n / i is not same as i and (n / i) > b, then increase div_count by 1 end if end if done end
#include <iostream> #include <cmath> using namespace std; int findDivisors(int A, int B) { int N = (A - B); int div_count = 0; for (int i = 1; i <= sqrt(N); i++) { if ((N % i) == 0) { if (i > B) div_count++; if ((N / i) != i && (N / i) > B) //ignore if it is already counted div_count++; } } return div_count; } int possibleWayCount(int A, int B) { if (A == B) //if they are same, there are infinity solutions return -1; if (A < B) //if A < B, then there are two possible solutions return 0; int div_count = 0; div_count = findDivisors(A, B); return div_count; } void possibleWay(int A, int B) { int sol = possibleWayCount(A, B); if (sol == -1) cout << "For A: " << A << " and B: " << B << ", X can take infinite values greater than " << A; else cout << "For A: " << A << " and B: " << B << ", X can take " << sol << " values"; } int main() { int A = 26, B = 2; possibleWay(A, B); }
For A: 26 and B: 2, X can take 6 values#
以上是在C/C++中寫出求解模方程式的程式?的詳細內容。更多資訊請關注PHP中文網其他相關文章!