搜尋
首頁後端開發Python教學使用Python中的NRC字典進行情感分類

使用Python中的NRC字典進行情感分類

情緒辨識辨識是一個人或一個物體感知環境中表現出的特定情緒並將其放入多種情緒類別之一的能力.

Python 中的

情感分類是傳統情感分析技術的可行替代方案,傳統情感分析技術將單字或句子標記為積極消極並分配它們相應地具有極性分數

這個演算法背後的基本思想是模仿人類思考過程,它試圖從文本中分割出描繪情感的單字。使用訓練資料集執行分析,其中一組預設資訊被輸入到系統中,作為分類的基礎。

這是基於 NLTK 庫 中的WordNet 同義詞集和加拿大國家研究委員會(NRC) 的情感詞典的軟體包,該詞典已超過 27,000 個術語

圖書館使用以下類別來衡量和分類單字的情緒效果 -

  • 恐懼

  • 憤怒

  • 期待

  • 信任

  • 驚喜

  • 積極

  • 負片

  • 悲傷

  • 厭惡

  • 喜悅

#安裝步驟

  • 第 1 步 - 在終端機中使用 pip install 指令安裝 NRC 模組。

#
pip install NRCLex
如果您使用的是 Windows,

在 jupyter 中安裝

筆記本命令提示字元通常遵循相同的步驟。

在 MacO 中安裝也遵循相同的命令。直接使用終端。

  • 第 2 步 - 另外安裝 textblob 和 nrclex 以避免遇到 MissingCorpusError

  • ul>#
    pip install textblob
    
    • 第 3 步 - 從 textblob 下載語料庫

    python -m textblob.download_corpora
    

    安裝後,我們可以繼續匯入庫並建立文字物件。

    基本方法

    1.原始文字到過濾後的文字(為了獲得最佳結果,「文字」應該是 unicode)。

    text_object.load_raw_text(text: str)

    2.將標記化的單字清單轉換為標記清單

    #
    text_object.load_token_list(list_of_tokens: list)

    3.傳回單字清單。

    text_object.words

    4。返回句子列表。

    text_object.sentences

    5。返回影響列表。

    text_object.affect_list

    6。返回影響字典。

    text_object.affect_dict

    7.傳回原始情緒數。

    text_object.raw_emotion_scores

    8。回最高的情緒。

    text_object.top_emotions

    9。返回頻率。

    Text_object.frequencies

    在這裡,我們使用 top_emotions 函數根據情緒對單字清單進行分類。

    演算法

    第 1 步 - 導入 nrclex 導入 nrclex

    步驟 2 - 從 nrclex 匯入 NRCLex

    第 3 步 - 初始化您想要分類的字串單字清單

    步驟 4 - 對於範圍 len(text) 內的 i

    第 4 步 -情緒 = NRCLex(text[i]) #為每個文字建立一個物件

    第 5 步 -情緒.top_emotions #對情緒進行分類

    範例

    # Import module
    import nrclex
    from nrclex import NRCLex
    
    text = ['happy', 'beautiful', 'exciting', 'depressed']
    
    # Iterate through list
    for i in range(len(text)):
    
       # call by object creation
       emotion = NRCLex(text[i])
    
       # Classify emotion
       print('\n', text[i], ': ', emotion.top_emotions) 
    

    輸出

    innocent : [('trust', 0.5), ('positive', 0.5)]
    hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)]
    irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), 
    ('disgust', 0.3333333333333333)]
    annoying : [('anger', 0.5), ('negative', 0.5)]
    

    演算法

    第 1 步 - 導入 nrclex

    #步驟 2 - 從 nrclex 匯入 NRCLex

    第 3 步 - 初始化您想要分類的字串單字清單

    步驟 4 - 對於範圍 len(text) 內的 i

    第 4 步 -情緒 = NRCLex(text[i]) #為每個文字建立一個物件

    第 5 步 -情緒.top_emotions #對情緒進行分類

    範例

    import nrclex
    from nrclex import NRCLex
     
    # Assign list of strings
    text = ['innocent','hate', 'irritating','annoying']
     
    # Iterate through list
    for i in range(len(text)):
     
       # Create object
       emotion = NRCLex(text[i])
    
       # Classify emotion
       print('\n\n', text[i], ': ', emotion.top_emotions) 
    

    輸出

    innocent :  [('trust', 0.5), ('positive', 0.5)] 
     hate :  [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] 
    irritating :  [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] 
     annoying :  [('anger', 0.5), ('negative', 0.5)] 
    

    結論

    NRC 情緒字典廣泛應用於研究和工業領域的情緒分析和情緒分類任務。這意味著有大量的用戶和資源社群可用於支援和進一步開發。 NRCLex 還借助谷歌翻譯,為全球 100 多種語言提供穩定的產出,成功打破了語言障礙。這在醫療保健領域有多種應用,可以幫助理解流行病應對措施。實際應用包括心理學和行為科學、假新聞檢測和增強人機互動。

以上是使用Python中的NRC字典進行情感分類的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:tutorialspoint。如有侵權,請聯絡admin@php.cn刪除
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),