用於快取方法的兩個工具是 functools.cached_property() 和 functools.lru_cache()。這兩個模組都是 functools 模組的一部分。 functools 模組用於高階函數:作用於或傳回其他函數的函數。讓我們先安裝並導入 functools 模組 -
安裝 functools
要安裝functools模組,請使用pip −
pip install functools
導入函數工具
要匯入functools −
import functools
讓我們一一了解快取 -
cached_property()
對於實例的昂貴計算屬性很有用,否則這些屬性實際上是不可變的。
cached_property 方法僅適用於不帶任何參數的方法。它不會創建對實例的引用。只有當實例處於活動狀態時,才會保留快取的方法結果。
這樣做的好處是當實例不再使用時,快取的方法結果會立即釋放。缺點是如果實例累積,累積的方法結果也會累積。他們可以無限制地成長。
Example
的中文翻譯為:範例
讓我們來看一個例子 -
class DataSet: def __init__(self, sequence_of_numbers): self._data = tuple(sequence_of_numbers) @cached_property def stdev(self): return statistics.stdev(self._data)
lru_cache
lru_cache 方法適用於具有可散列參數的方法。除非特別努力傳遞弱引用,否則它會建立對實例的引用。
最近最少使用演算法的優點是快取受到指定的最大大小的限制。缺點是實例會一直保持活動狀態,直到它們從快取中過期或快取被清除。
Example
的中文翻譯為:範例
讓我們來看一個例子 -
@lru_cache def count_vowels(sentence): return sum(sentence.count(vowel) for vowel in 'AEIOUaeiou')
使用快取計算斐波那契數的範例 −
from functools import lru_cache @lru_cache(maxsize=None) def fib(n): if n < 2: return n return fib(n-1) + fib(n-2) print([fib(n) for n in range(16)]) print(fib.cache_info())
輸出
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
快取範例
現在,讓我們來看看 functool cached_property() 和 lru_cache 的完整範例 -
from functools import lru_cache from functools import cached_property class Weather: "Lookup weather information on a government website" def __init__(self, station_id): self._station_id = station_id # The _station_id is private and immutable def current_temperature(self): "Latest hourly observation" # Do not cache this because old results # can be out of date. @cached_property def location(self): "Return the longitude/latitude coordinates of the station" # Result only depends on the station_id @lru_cache(maxsize=20) def historic_rainfall(self, date, units='mm'): "Rainfall on a given date" # Depends on the station_id, date, and units.
以上是如何在Python中快取方法呼叫?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境