假設給定三個整數 a、b 和 c,並且有一個方程式 x = b* (sumofdigits(x)^a) c。 這裡, sumofdigits(x ) 是x中所有數字的總和。為了找到滿足方程式的所有可能的積分解,我們將探索 C 中的各種方法。
下面給出的是 a、b 和 c 的值。滿足方程式 x = b* (sumofdigits(x)^a) c 的不同積分解作為輸出給出。
Input: a = 2, b = 2, c = -3 Output: 125, 447, 575
在上述情況中,a的值為2,b的值為2,c的值為-3,而x的可能值為125、447和575。
考慮數字125,其各位數字和為8,如果將這個值代入方程式b*(sum(x)^a) c,答案為125,與x相等。因此,它是方程式的一個可能解。
注意- 此方程式的積分解在 1 到 109 範圍內。
我們可以使用遞歸搜尋來找到給定方程式的積分解。
我們需要建立一個名為sumOfDigits()的函數,用於計算任何給定數字N的數字總和。
使用模運算子和除運算子迭代N 的數字。
模運算子用於提取N的最後一位數字。
在每次迭代後,將儲存在變數 sum 中的數字逐一相加。
我們建立一個integralSolutions()函數來計算積分解。
它使用sumOfDigits函數計算x的數字總和。
接下來,使用 for 迴圈我們將總和求 a 次方。
我們透過將b乘以power並加上c來評估方程式的右邊。
如果x的值等於右邊的值,則視為一個整數解。
接下來,我們有遞歸函數來搜尋指定範圍內的積分解。
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; // addition of the last digit of N N /= 10; } return sum; } void integralSolutions(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int j = 0; j < a; j++) { power *= sum; } int rightHandSide = b * power + c; if (x == rightHandSide) { std::cout << "Integral solution: " << x << std::endl; } } void recursion(int start, int end, int a, int b, int c) { if (start > end) { return; } integralSolutions(start, a, b, c); recursion(start + 1, end, a, b, c); } int main() { int a = 1, b = 3, c = 5; recursion(1, 100000, a, b, c); return 0; }
Integral solution: 11 Integral solution: 38
分段錯誤 當遞迴搜尋中指定範圍的結束值超過100000時,會出現此錯誤。因此,您不能有超過該值的x值。
如果你想要大於100000的x的整數解,那我們不使用遞迴。在這裡,我們將使用從1到109的x的簡單迭代,並將其與方程式的右側值進行比較。
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; N /= 10; } return sum; } bool integralSolution(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int i = 0; i < a; i++) { power *= sum; } int rightHandSide = b * power + c; return x == rightHandSide; } int main() { int a = 3, b = 5, c = 8; // x ranges from 1 to 109 for (int x = 1; x <= 1000000000; x++) { if (integralSolution(x, a, b, c)) { std::cout << "Integral solution: " << x << std::endl; } } return 0; }
Integral solution: 53248 Integral solution: 148963
我們探討了尋找方程式 x = b* (sumofdigits(x)^a) c 積分解的方法,其中包括使用遞歸或簡單迭代。遞歸方法可讓您靈活地指定解的範圍。但是,它增加了時間複雜度,並且可能會顯示較大範圍值的分段錯誤,從而導致堆疊溢位。
迭代方法在時間複雜度和記憶體使用方面都很有效率。然而,它提供的靈活性有限且程式碼更複雜。因此,這兩種方法都有各自的優點和缺點。根據您的需求,您可以選擇任何一種方法。
以上是方程式 x = b*(sumofdigits(x) ^ a)+c 的整數解的數量的詳細內容。更多資訊請關注PHP中文網其他相關文章!