搜尋
首頁後端開發Python教學使用Python進行RFM分析

使用Python進行RFM分析

Python是一種多功能的程式語言,在資料分析和機器學習領域廣受歡迎。其簡潔性、可讀性和豐富的函式庫使其成為處理複雜資料任務的理想選擇。其中一個強大的應用是RFM分析,這是一種在行銷中根據客戶購買行為進行分割的技術。

在本教程中,我們將透過使用Python來實作RFM分析的過程來引導您。我們將從解釋RFM分析的概念及其在行銷中的重要性開始。然後,我們將逐步深入探討使用Python進行RFM分析的實際面向。在文章的下一部分中,我們將示範如何使用Python為每個客戶計算RFM分數,考慮到為最近性、頻率和貨幣價值分配分數的不同方法。

理解RFM分析

RFM分析是一種在行銷中使用的強大技術,根據客戶的購買行為進行分割。 RFM的首字母代表最近性(Recency)、頻率(Frequency)和貨幣價值(Monetary value),這三個關鍵因素被用來評估和分類客戶。讓我們分解每個組成部分,以了解其在RFM分析中的重要性。

  • 最近性:最近性指的是自客戶上次購買以來經過的時間。它幫助我們了解客戶最近與業務的互動情況。

  • 頻率:頻率指的是顧客在給定時間範圍內進行購買的次數。它幫助我們了解客戶與業務的互動頻率。

  • 貨幣價值:貨幣價值指的是顧客在購買上花費的總金額。它幫助我們了解客戶交易的價值和他們對業務的潛在價值。

現在我們已經了解了RFM分析,讓我們在本文的下一部分中學習如何在Python中實現它。

在Python中實作RFM分析

使用Python進行RFM分析,我們將依賴兩個基本函式庫:Pandas和NumPy。要在您的電腦上安裝NumPy和Pandas,我們將使用pip(Python軟體套件管理器)。打開您的終端機或命令提示符,並執行以下命令:

pip install pandas
pip install numpy

一旦安裝完成,我們可以使用Python繼續實作RFM分析。

步驟1:導入所需的庫

首先,讓我們將必要的庫導入到我們的Python腳本中:

import pandas as pd
import numpy as np

第二步:載入與準備資料

接下來,我們需要載入和準備資料進行RFM分析。假設我們有一個名為`customer_data.csv`的資料集,其中包含有關客戶交易的信息,包括客戶ID、交易日期和購買金額。我們可以使用Pandas將資料讀入DataFrame並對其進行預處理以進行分析。

# Load the data from the CSV file
df = pd.read_csv('customer_data.csv')

# Convert the transaction date column to datetime format
df['transaction_date'] = pd.to_datetime(df['transaction_date'])

步驟3:計算RFM指標

現在,讓我們繼續前進,為每個客戶計算RFM指標。透過利用一系列的函數和操作,我們將確定最近購買時間、購買頻率和購買金額的得分。

# Calculate recency by subtracting the latest transaction date from each customer's transaction date
df['recency'] = pd.to_datetime('2023-06-02') - df['transaction_date']

# Calculate frequency by counting the number of transactions for each customer
df_frequency = df.groupby('customer_id').agg({'transaction_id': 'nunique'})
df_frequency = df_frequency.rename(columns={'transaction_id': 'frequency'})

# Calculate monetary value by summing the purchase amounts for each customer
df_monetary = df.groupby('customer_id').agg({'purchase_amount': 'sum'})
df_monetary = df_monetary.rename(columns={'purchase_amount': 'monetary_value'})

第四步:分配RFM分數

在這一步驟中,我們將為最近性、頻率和貨幣價值指標分配分數,從而能夠根據客戶的購買行為進行評估和分類。重要的是要注意,您可以根據項目的獨特要求自訂評分標準。

# Define score ranges and assign scores to recency, frequency, and monetary value
recency_scores = pd.qcut(df['recency'].dt.days, q=5, labels=False)
frequency_scores = pd.qcut(df_frequency['frequency'], q=5, labels=False)
monetary_scores = pd.qcut(df_monetary['monetary_value'], q=5, labels=False)

# Assign the calculated scores to the DataFrame
df['recency_score'] = recency_scores
df_frequency['frequency_score'] = frequency_scores
df_monetary['monetary_score'] = monetary_scores

第五步:組合RFM分數

最後,我們將把每位客戶的個別RFM分數合併成一個RFM分數。

# Combine the RFM scores into a single RFM score
df['RFM_score'] = df['recency_score'].astype(str) + df_frequency['frequency_score'].astype(str) + df_monetary['monetary_score'].astype(str)

# print data  
print(df)

當您執行上面提供的程式碼來使用Python計算RFM分數時,您將看到以下輸出:

輸出

   customer_id transaction_date  purchase_amount  recency  recency_score  frequency_score  monetary_score RFM_score
0      1234567       2023-01-15             50.0 138 days              3                1               2       312
1      2345678       2023-02-01             80.0 121 days              3                2               3       323
2      3456789       2023-03-10            120.0  84 days              4                3               4       434
3      4567890       2023-05-05             70.0  28 days              5                4               3       543
4      5678901       2023-05-20            100.0  13 days              5                5               4       554

從上面的輸出可以看到,它顯示了每個客戶的數據,包括他們的唯一 customer_id、transaction_date 和 purchase_amount。 recency 欄位表示以天為單位計算的最新性。 recency_score、frequency_score 和 monetary_score 欄位顯示了每個指標的分配分數。

最後,RFM_score欄將最近性、頻率和貨幣價值的個別分數合併為一個RFM分數。這個得分可以用來對客戶進行分割,並了解他們的行為和偏好。

就是這樣!您已成功使用Python計算出每位客戶的R​​FM分數。

結論

總之,RFM分析是一種在行銷中非常有用的技術,它允許我們根據客戶的購買行為進行分割。在本教程中,我們探討了RFM分析的概念及其在行銷中的重要性。我們提供了使用Python實施RFM分析的逐步指南。我們介紹了必要的Python庫,如Pandas和NumPy,並示範如何為每個客戶計算RFM分數。我們為過程的每個步驟提供了範例和解釋,使其易於跟隨。

以上是使用Python進行RFM分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:tutorialspoint。如有侵權,請聯絡admin@php.cn刪除
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),