搜尋
首頁後端開發Python教學使用Python計算神經機器翻譯的BLEU分數

使用Python計算神經機器翻譯的BLEU分數

使用 NMT 或 NLP 中的神經機器翻譯,我們可以將文字從給定語言翻譯為目標語言。為了評估翻譯的執行情況,我們使用 Python 中的 BLEU 或雙語評估學生分數。

BLEU 分數的工作原理是將機器翻譯的句子與人工翻譯的句子進行比較,兩者都採用 n 元語法。此外,隨著句子長度的增加,BLEU 分數下降。一般來說,BLEU 分數的範圍是 0 到 1,數值越高表示品質越好。然而,獲得滿分的情況非常罕見。請注意,評估是在子串匹配的基礎上完成的,它沒有考慮語言的其他方面,如連貫性、時態和語法等。

公式

BLEU = BP * exp(1/n * sum_{i=1}^{n} log(p_i))

這裡,各個術語具有以下含義 -

  • BP 是簡潔懲罰。它根據兩個文本的長度調整 BLEU 分數。其公式為 -

BP = min(1, exp(1 - (r / c)))
  • n是n-gram匹配的最大階數

  • p_i 是精確度分數

演算法

  • 第 1 步 - 匯入資料集庫。

  • 步驟 2 - 使用 load_metric 函數並以 bleu 作為參數。

  • 第 3 步 - 根據翻譯後的字串的單字列出清單。

  • 步驟 4 - 使用所需輸出字串的單字重複步驟 3。

  • 步驟 5 - 使用 bleu.compute 尋找 bleu 值。

範例 1

在這個範例中,我們將使用 Python 的 NLTK 函式庫來計算將德文句子機器翻譯成英文的 BLEU 分數。

  • 原文(英文)- 今天下雨

  • 機器翻譯文字 - 今天下雨

  • 所需文字 - 今天下雨,今天下雨

雖然我們可以看到翻譯沒有正確完成,但我們可以透過尋找藍色分數來更好地了解翻譯品質。

範例

#import the libraries
from datasets import load_metric
  
#use the load_metric function
bleu = load_metric("bleu")

#setup the predicted string
predictions = [["it", "rain", "today"]]

#setup the desired string
references = [
   [["it", "is", "raining", "today"], 
   ["it", "was", "raining", "today"]]
]

#print the values
print(bleu.compute(predictions=predictions, references=references))

輸出

{'bleu': 0.0, 'precisions': [0.6666666666666666, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7165313105737893, 'length_ratio': 0.75, 'translation_length': 3, 'reference_length': 4}

您可以看到,翻譯效果不是很好,因此,藍色分數為 0。

範例 2

在此範例中,我們將再次計算 BLEU 分數。但這一次,我們將把一個法文句子機器翻譯成英文。

  • 原始文字(德語)- 我們要去旅行

  • #機器翻譯的文字 - 我們要去旅行

  • 所需文字 - 我們要去旅行,我們要去旅行

您可以看到,這次翻譯的文字更接近所需的文字。讓我們檢查一下它的 BLEU 分數。

範例

#import the libraries
from datasets import load_metric
  
#use the load_metric function
bleu = load_metric("bleu")

#steup the predicted string
predictions = [["we", "going", "on", "a", "trip"]]

#steup the desired string
references = [
   [["we", "are", "going", "on", "a", "trip"], 
   ["we", "were", "going", "on", "a", "trip"]]
]

#print the values
print(bleu.compute(predictions=predictions, references=references))

輸出

{'bleu': 0.5789300674674098, 'precisions': [1.0, 0.75, 0.6666666666666666, 0.5], 'brevity_penalty': 0.8187307530779819, 'length_ratio': 0.8333333333333334, 'translation_length': 5, 'reference_length': 6}

您可以看到,這次完成的翻譯非常接近所需的輸出,因此藍色分數也高於 0.5。

結論

BLEU Score 是一個很棒的工具,可以檢查翻譯模型的效率,從而進一步改進它以產生更好的結果。儘管 BLEU 分數可用於粗略了解模型,但它僅限於特定詞彙,並且通常忽略語言的細微差別。這就是 BLEU 分數與人類判斷很少協調的原因。但您絕對可以嘗試一些替代方案,例如 ROUGE 分數、METEOR 指標和 CIDEr 指標。

以上是使用Python計算神經機器翻譯的BLEU分數的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:tutorialspoint。如有侵權,請聯絡admin@php.cn刪除
Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。