ANCOVA(協方差分析)是一種有用的統計方法,因為它可以在分析中包含協變量,這可以幫助調整輔助變數並增加組間比較的精確度。這些額外的因素或協變量可以透過使用ANCOVA將其納入研究中。為了確保觀察到的組間差異是由研究中的治療或介入引起的,而不是由無關因素引起的,可以使用ANCOVA來調整協變量對組別平均值的影響。這可以使組間比較更準確,並給出更可靠的關於變數之間關係的結論。在本文中,我們將仔細研究ANCOVA並在Python中實施。
什麼是ANCOVA?
協方差分析 (ANCOVA) 方法比較兩個或多個組別的平均值,同時調整一個或多個連續變數(稱為協變數)的影響。 ANCOVA 與 ANOVA(變異數分析)類似,但它允許將變數包含在模型中。因此,它是評估這些因素對組別平均值的影響並在組別之間進行更準確比較的寶貴工具。
考慮以下情境−您正在進行研究,評估一種新的降血壓藥物的療效。您收集了服用該藥物的一組人和不服用藥物的一組人的血壓數據,以及每個參與者的年齡數據。您可以使用ANCOVA來比較兩組在因變數(血壓)上的平均值,同時調整協變數(年齡)對組別平均值的影響。這將使您能夠確定藥物在考慮組間任何年齡差異的情況下是否成功降低血壓。
在Python中實作ANCOVA
考慮以下使用statsmodels模組在Python中執行的ANCOVA:
文法
df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16], 'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"], 'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]}) model = ols('dependent_variable ~ group + covariate', data=df).fit()
利用 Python 的 statsmodels 模組,可以進行 ANCOVA(協方差分析)。協方差分析 (ANCOVA) 是一種統計方法,用於比較兩個或多個組別的平均值,同時調整一個或多個連續變數(稱為協變數)的影響。
演算法
導入 Pandas 和 statsmodel.api
#定義 Ancova 的資料
執行Ancova操作
#列印模型摘要
#Example
的中文翻譯為:範例
此處示範了使用 scikit−posthocs 函式庫來執行 Dunn 的測試 -
import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols # Define the data for the ANCOVA df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16], 'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"], 'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]}) # Perform the ANCOVA model = ols('dependent_variable ~ group + covariate', data=df).fit() # Print the summary of the model print(model.summary())
輸出
OLS Regression Results ============================================================================== Dep. Variable: dependent_variable R-squared: 0.939 Model: OLS Adj. R-squared: 0.909 Method: Least Squares F-statistic: 31.00 Date: Fri, 09 Dec 2022 Prob (F-statistic): 0.000476 Time: 09:52:28 Log-Likelihood: -10.724 No. Observations: 10 AIC: 29.45 Df Residuals: 6 BIC: 30.66 Df Model: 3 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 6.0000 1.054 5.692 0.001 3.421 8.579 group[T.B] 2.3333 0.805 2.898 0.027 0.363 4.303 group[T.C] 4.8333 1.032 4.684 0.003 2.308 7.358 covariate 0.0667 0.030 2.191 0.071 -0.008 0.141 ============================================================================== Omnibus: 2.800 Durbin-Watson: 2.783 Prob(Omnibus): 0.247 Jarque-Bera (JB): 1.590 Skew: -0.754 Prob(JB): 0.452 Kurtosis: 1.759 Cond. No. 201.
群組變數和協變數變數的估計係數及其 p 值和信賴區間都會包含在此程式碼的輸出中。此資料可用於比較組別平均值,同時考慮協變數的影響,並評估模型中組別和協變量變數的重要性。
整體而言,statsmodels 模組為 Python 使用者提供了一個強大且適應性強的工具來執行 ANCOVA。它使創建、測試、分析和理解 ANCOVA 模型及其輸出變得簡單。
結論
最後,ANCOVA(協方差分析)是一種用於比較兩個或多個組別的平均值的統計方法,同時調整一個或多個連續變數(稱為協變數)的影響。 ANCOVA類似於ANOVA(變異數分析),但它允許將變數納入模型。因此,它是評估這些因素對組別平均值影響的有價值工具,並產生更準確的組間比較。它在心理學、生物學和經濟學等各種研究領域中廣泛應用,用於評估協變量對群體平均值的影響,並得出關於變數相關性的更精確結論。
以上是如何在Python中執行ANCOVA?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),