搜尋
首頁後端開發Python教學如何在Python中執行ANCOVA?

如何在Python中執行ANCOVA?

Sep 01, 2023 pm 05:21 PM
python執行ancova

如何在Python中執行ANCOVA?

ANCOVA(協方差分析)是一種有用的統計方法,因為它可以在分析中包含協變量,這可以幫助調整輔助變數並增加組間比較的精確度。這些額外的因素或協變量可以透過使用ANCOVA將其納入研究中。為了確保觀察到的組間差異是由研究中的治療或介入引起的,而不是由無關因素引起的,可以使用ANCOVA來調整協變量對組別平均值的影響。這可以使組間比較更準確,並給出更可靠的關於變數之間關係的結論。在本文中,我們將仔細研究ANCOVA並在Python中實施。

什麼是ANCOVA?

協方差分析 (ANCOVA) 方法比較兩個或多個組別的平均值,同時調整一個或多個連續變數(稱為協變數)的影響。 ANCOVA 與 ANOVA(變異數分析)類似,但它允許將變數包含在模型中。因此,它是評估這些因素對組別平均值的影響並在組別之間進行更準確比較的寶貴工具。

考慮以下情境−您正在進行研究,評估一種新的降血壓藥物的療效。您收集了服用該藥物的一組人和不服用藥物的一組人的血壓數據,以及每個參與者的年齡數據。您可以使用ANCOVA來比較兩組在因變數(血壓)上的平均值,同時調整協變數(年齡)對組別平均值的影響。這將使您能夠確定藥物在考慮組間任何年齡差異的情況下是否成功降低血壓。

在Python中實作ANCOVA

考慮以下使用statsmodels模組在Python中執行的ANCOVA:

文法

df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16],
   'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"],
   'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]})

model = ols('dependent_variable ~ group + covariate', data=df).fit()

利用 Python 的 statsmodels 模組,可以進行 ANCOVA(協方差分析)。協方差分析 (ANCOVA) 是一種統計方法,用於比較兩個或多個組別的平均值,同時調整一個或多個連續變數(稱為協變數)的影響。

演算法

  • 導入 Pandas 和 statsmodel.api

  • #定義 Ancova 的資料

  • 執行Ancova操作

  • #列印模型摘要

#Example

的中文翻譯為:

範例

此處示範了使用 scikit−posthocs 函式庫來執行 Dunn 的測試 -

import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols

# Define the data for the ANCOVA
df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16],
   'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"],
    'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]})

# Perform the ANCOVA
model = ols('dependent_variable ~ group + covariate', data=df).fit()

# Print the summary of the model
print(model.summary())

輸出

                           OLS Regression Results                            
==============================================================================
Dep. Variable:     dependent_variable   R-squared:                       0.939
Model:                            OLS   Adj. R-squared:                  0.909
Method:                 Least Squares   F-statistic:                     31.00
Date:                Fri, 09 Dec 2022   Prob (F-statistic):           0.000476
Time:                        09:52:28   Log-Likelihood:                -10.724
No. Observations:                  10   AIC:                             29.45
Df Residuals:                       6   BIC:                             30.66
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      6.0000      1.054      5.692      0.001       3.421       8.579
group[T.B]     2.3333      0.805      2.898      0.027       0.363       4.303
group[T.C]     4.8333      1.032      4.684      0.003       2.308       7.358
covariate      0.0667      0.030      2.191      0.071      -0.008       0.141
==============================================================================
Omnibus:                        2.800   Durbin-Watson:                   2.783
Prob(Omnibus):                  0.247   Jarque-Bera (JB):                1.590
Skew:                          -0.754   Prob(JB):                        0.452
Kurtosis:                       1.759   Cond. No.                         201.

群組變數和協變數變數的估計係數及其 p 值和信賴區間都會包含在此程式碼的輸出中。此資料可用於比較組別平均值,同時考慮協變數的影響,並評估模型中組別和協變量變數的重要性。

整體而言,statsmodels 模組為 Python 使用者提供了一個強大且適應性強的工具來執行 ANCOVA。它使創建、測試、分析和理解 ANCOVA 模型及其輸出變得簡單。

結論

最後,ANCOVA(協方差分析)是一種用於比較兩個或多個組別的平均值的統計方法,同時調整一個或多個連續變數(稱為協變數)的影響。 ANCOVA類似於ANOVA(變異數分析),但它允許將變數納入模型。因此,它是評估這些因素對組別平均值影響的有價值工具,並產生更準確的組間比較。它在心理學、生物學和經濟學等各種研究領域中廣泛應用,用於評估協變量對群體平均值的影響,並得出關於變數相關性的更精確結論。

以上是如何在Python中執行ANCOVA?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:tutorialspoint。如有侵權,請聯絡admin@php.cn刪除
Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),