Machine Learning
##ML 是指電腦演算法的研究,它們能夠在沒有明確人為程式設計的情況下進行學習。它們透過攝取和處理資料來幫助識別模式和趨勢。
機器學習在醫療保健、行銷、醫療服務、物流、人力資源、能源、保護、電子商務、製造業、藝術與創意、金融、交通、汽車、政府監控、保險以及數位媒體和娛樂等領域普遍適用。像蘋果、Google、微軟、IBM等大型企業都廣泛使用機器學習。除了這些科技巨頭,小型和中型新創企業也依賴機器學習。大多數科技公司利用人工智慧來透過利用客戶體驗來提升客戶滿意度。
Knowing which is the Better Language to Learn ML (C , Python, or R)
C
C 是一種物件導向的程式語言。在上世紀80年代作為系統語言(用於構建系統設計)被推出,它進展複雜但在執行基本任務方面表現出色。
C has numerous applications generally because it is a low-level language. This implies it speaks with machines near their local code. (The option is an abstract, high-level language code. (The option is an abstract, high-level language 相同to utilize but slower to execute). Being low-level, C has a precarious expectation to learn and adapt. Be that as it may, it is likewise brilliant for memory control. Speed here is vital.
- ##關於ML,C 用戶端可以以細粒度控制計算並管理記憶體資源。這就是為什麼它非常適合像人工智慧這樣需要快速分析大型資料集的領域。不過,它並不適合快速原型開發,並且仍然是資料專家和人工智慧工程師中的首選。
- 由於C 對執行有嚴格的控制,因此在需要高響應性的領域如機械技術和遊戲中非常受歡迎。這些也是人工智慧快速發展的領域。此外,C 還有一些機器學習和人工智慧庫。
Python
- It is a lightweight, flexible, simple programming language that can drive complex prearranging and web applications whenever utilized in a powerful structure. It was made in 1991 as abroad road spergram, roadure. It was made in 1991 as broad roadly sst, road roadly sage, repersy roadly sage, road roadly 筆a basic, simple to learn, and its prevalence exceeds all rational limitations. It upholds numerous structures and libraries, making it adaptable.
- #Python開發人員一直在使用這種模式,因為它是人工智慧、資訊分析和網站開發領域最受追捧的語言。開發人員發現編碼快速且易於學習。大家都喜歡Python,因為它在編碼時允許很多彈性。由於其靈活性和開源性質,它擁有許多視覺化套件和重要的核心庫,如sklearn、seaborn等。這些強大的庫使編碼成為一項簡單的任務,並使機器能夠發現更多。
- Python支援物件導向、命令式、函數式和流程改進標準。兩個非常受歡迎的人工智慧函式庫,Python開發者使用的是TensorFlow和Scikit。它非常適合原型設計、情感分析、科學計算、自然語言處理和資料科學。
- Python has become a well-known language for AI and ML development. With a straightforward language structure, broad library system, and various local areas of engineers, Python offers a substantially flex reive 使用 0
#The language is profoundly adaptable, and its standard library incorporates modules from image processing to regular language handling.
ML is a well-known application for Python. It has become the norm for some organizations since it allows them to fabricate arrangements rapidly without putting resources into exorbitant ameworks. The frameworks without putting resources into exorbitant ameworks. The -frameworks of lioo, sooykakpk身體, the clameworks. TensorFlow, and Keras makes it simple to construct models without any preparation.-
R
的中文翻譯為:
R
R是一種著名的開源資訊感知驅動語言,在人工智慧領域具有很高的地位。 R基金會和R開發中心團隊正在管理它。它提供了對命令列和其他IDE的支持,易於使用,並提供了各種工具,以便更好地管理庫和繪製更好的圖表。
R has a decent resource pool because of notable elements that help create ML applications. Its use for information and measurements has been significant. Viable ML arrangements can be conveyed with their weighty register abhiies. it is utilized by information researchers for examining information through charts, by tremendous combinations, particularly in the biomedical field.-
R被稱為執行機器學習系統,如決策樹形成、回歸、分類等。由於其功能特徵和統計學,它已成為一種動態、基礎、有用的語言。它支援Windows、Linux和作業系統X等工作框架。
ML is the most exciting field in software engineering at present. The capacity to construct wise frameworks without any preparation utilizing calculations can change ventures like manufacturing, healthcare, finance, and transport#.
儘管如此,它需要大量的程式設計知識和技能。很容易找到那些對統計學和程式設計都很了解的人來建立相關模型。
R gives an environment climate to doing this sort of work. It's free, generally utilized, and has a developing, lively local area.-
Conclusion
機器學習是研究無需人類輸入的電腦演算法的領域。機器學習有無數的應用,從自然語言處理到電腦視覺,再到預測分析等等。低階語言(如R、C 或Java)提供更高的速度,但學習起來更加困難。高階語言(如JavaScript和Python)更易於使用,但執行速度較慢。 Python是機器學習和資料分析的重要語言。對於初學者來說,它是速度和能力兼具的最佳選擇。
以上是學習機器學習,哪種語言比較好:C++、Python還是R?的詳細內容。更多資訊請關注PHP中文網其他相關文章!