搜尋
首頁後端開發C++N個數的乘積的因子個數

N個數的乘積的因子個數

Aug 30, 2023 pm 05:37 PM
) n個數乘積) 因子個數) 程式設計關鍵字

N個數的乘積的因子個數

一個數的除數是能夠將其整除而沒有任何餘數的數。換句話說,一個數n的除數是當乘以任何其他整數時得到n的數。它也可以被稱為一個數的因數。

Dividend ÷ Divisor = Quotient.

例如,如果我們用5除以60,我們將得到12,反之亦然,因此,12和60可以被認為是60的除數。

乘以N個數的因子數

給定任務是找到給定數字的乘積的除數數量。讓我們透過一個例子來理解這個問題。

假設我們給了數字6、6和10。這些數字的乘積是120,120的約數是1、2、3、4、5、6、8、10、12、15、20、24、30、40、60、120。因此,輸出應為16

Input: 6, 2, 10
Output: 16

使用取模運算子

實現這一目標的一種方法是使用 取模(%)運算子找到除數,並透過從 1 迭代到 product 來計數它們。

模運算子 (%) 運算子用於取得除法運算的餘數。如果除法的餘數為零,則表示被除數可以被除數整除。例如,(30 % 5) 為 0,因此 30 可以被 5 整除。

計算一個陣列中所有數字的乘積的約數個數。

  • 使用乘法運算子將​​陣列中的所有數字相乘,並將結果儲存在名為product的變數中。

  • 使用模運算符,從1到Product,將Product與每個數字相除並取得餘數。

  • 建立一個變數 count,如果餘數為0,則增加 count 變數。

Example

的中文翻譯為:

範例

以下程式計算給定數字的乘積的約數數量 −

#include <iostream>
using namespace std;

// Define a function for finding the number
int findNumberOfDivisors(int arr[], int N) {

   // Multiply all the numbers in the array
   int product = 1;
   for (int x = 0; x < N; x++) {
      product *= arr[x];
   }

   // Count the divisors
   int count = 0;
   for (int x = 1; x <= product; x++) {
      if (product % x == 0) {
         count++;
      }
   }

   return count;
}
int main() {

   // Declaration of the numbers and N
   int numbers[] = { 12, 16, 40 };
   int N = sizeof(numbers) / sizeof(numbers[0]);
   int divisors = findNumberOfDivisors(numbers, N);
   std::cout << "Number of divisors: " << divisors;
   return 0;
}

輸出

Number of divisors: 40

注意−對於較大的數字,這種方法效率非常低。由於數字較大,乘積也會很大。這將導致大量的迭代,增加時間複雜度。

使用質因數分解

如果N是一個合數,那麼

N = x<sup>a</sup>  * y<sup>b</sup>  * z<sup>c</sup>

其中a、b和c是質因數,那麼N的約數個數由下列公式給出

(a + 1)(b + 1)(c + 1)

我們將使用上述概念來找出N個數字乘積的約數個數。

演算法/步驟

  • 將所有N個數字相乘,並將結果儲存在一個名為product的變數中。

  • 從2迭代一個for迴圈,直到平方根為止,product

  • 取得乘積的質因數。為此,我們使用模運算子來檢查product 是否可以被目前的x值整除。如果可以,x被儲存為質因數,而count 被儲存為質因數的冪。

  • 使用庫和push_back()函數將質因數及其指數儲存在向量容器primeFactorpower中。

  • 如果還有剩餘的質因數,請也將它們儲存起來。

  • 透過從0迭代到質因數的個數,並使用上述公式計算約數。

Example

的中文翻譯為:

範例

以下是使用質因數分解法找到給定數字乘積的因子數量的程式 -

#include <iostream>
#include <vector>
#include <cmath>

// Multiply all the N numbers
int findNumberOfDivisors(int arr[], int N) {
   int product = 1;
   for (int x = 0; x < N; x++) {
      product *= arr[x];
   }

   std::vector<int> primeFactor;
   std::vector<int> power;
    
   // Check if x is divisor of product

   // Store the prime factor and exponent in the vector container
   for (int x = 2; x <= sqrt(product); x++) {
      if (product % x == 0) {
         int count = 0;
         while (product % x == 0) {
            product /= x;
            count++;
         }
         primeFactor.push_back(x);
         power.push_back(count);
      }
   }
    
   // Store the remaining prime factor (if present)  
   if (product > 1) {
      primeFactor.push_back(product);
      power.push_back(1);
   }
    
   // Count the number of divisors
   int divisorsCount = 1;
   for (int x = 0; x < primeFactor.size(); x++) {
      divisorsCount *= (power[x] + 1);
   }

   return divisorsCount;
}

int main() {
   int numbers[] = {12, 16, 40};
   
   // Calculate the number of elements in the array
   int N = sizeof(numbers) / sizeof(numbers[0]);
   int divisors = findNumberOfDivisors(numbers, N);
   std::cout << "Number of divisors: " << divisors << std::endl;
   return 0;
}

輸出

Number of divisors: 40

使用巢狀循環

我們也可以透過巢狀循環找到所有N個數字的乘積。在外部循環中,我們需要迭代從1到product的所有數字。在這個數字範圍內,我們將找到所有可能的除數。在嵌套循環中,我們將計算每個數字及其倍數的除數數量。

Example

的中文翻譯為:

範例

#include <iostream>
#include <vector>

int findNumberOfDivisors(int arr[], int N) {
   std::vector<int> divisorsCount(11000, 0);
    
   // Multiply all the N numbers
   int product = 1;
   for (int x = 0; x < N; x++) {
      product *= arr[x];
    }
    
   // Count of divisors
   for (int x = 1; x <= product; x++) {
      for (int y = x; y <= product; y += x) {
         divisorsCount[y]++;
      }
   }

   return divisorsCount[product];
}

int main() {
   int numbers[] = {12, 16, 40};
   int N = sizeof(numbers) / sizeof(numbers[0]);
   int divisors = findNumberOfDivisors(numbers, N);
   std::cout << "Number of divisors: " << divisors << std::endl;
   return 0;
}

輸出

Number of divisors: 40

結論

我們已經討論了不同的方法來找到N個數字的乘積的約數數量,包括使用模運算子、質因數分解、嵌套循環等等。對於較大的數字,我們無法有效率地使用模運算子。為了獲得最佳化的結果,我們可以使用質因數分解和嵌套循環的方法。

以上是N個數的乘積的因子個數的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:tutorialspoint。如有侵權,請聯絡admin@php.cn刪除
C#與C:歷史,進化和未來前景C#與C:歷史,進化和未來前景Apr 19, 2025 am 12:07 AM

C#和C 的歷史與演變各有特色,未來前景也不同。 1.C 由BjarneStroustrup在1983年發明,旨在將面向對象編程引入C語言,其演變歷程包括多次標準化,如C 11引入auto關鍵字和lambda表達式,C 20引入概念和協程,未來將專注於性能和系統級編程。 2.C#由微軟在2000年發布,結合C 和Java的優點,其演變注重簡潔性和生產力,如C#2.0引入泛型,C#5.0引入異步編程,未來將專注於開發者的生產力和雲計算。

C#vs. C:學習曲線和開發人員的經驗C#vs. C:學習曲線和開發人員的經驗Apr 18, 2025 am 12:13 AM

C#和C 的学习曲线和开发者体验有显著差异。1)C#的学习曲线较平缓,适合快速开发和企业级应用。2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#vs. C:面向對象的編程和功能C#vs. C:面向對象的編程和功能Apr 17, 2025 am 12:02 AM

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显著差异。1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

從XML到C:數據轉換和操縱從XML到C:數據轉換和操縱Apr 16, 2025 am 12:08 AM

從XML轉換到C 並進行數據操作可以通過以下步驟實現:1)使用tinyxml2庫解析XML文件,2)將數據映射到C 的數據結構中,3)使用C 標準庫如std::vector進行數據操作。通過這些步驟,可以高效地處理和操作從XML轉換過來的數據。

C#vs. C:內存管理和垃圾收集C#vs. C:內存管理和垃圾收集Apr 15, 2025 am 12:16 AM

C#使用自動垃圾回收機制,而C 採用手動內存管理。 1.C#的垃圾回收器自動管理內存,減少內存洩漏風險,但可能導致性能下降。 2.C 提供靈活的內存控制,適合需要精細管理的應用,但需謹慎處理以避免內存洩漏。

超越炒作:評估當今C的相關性超越炒作:評估當今C的相關性Apr 14, 2025 am 12:01 AM

C 在現代編程中仍然具有重要相關性。 1)高性能和硬件直接操作能力使其在遊戲開發、嵌入式系統和高性能計算等領域佔據首選地位。 2)豐富的編程範式和現代特性如智能指針和模板編程增強了其靈活性和效率,儘管學習曲線陡峭,但其強大功能使其在今天的編程生態中依然重要。

C社區:資源,支持和發展C社區:資源,支持和發展Apr 13, 2025 am 12:01 AM

C 學習者和開發者可以從StackOverflow、Reddit的r/cpp社區、Coursera和edX的課程、GitHub上的開源項目、專業諮詢服務以及CppCon等會議中獲得資源和支持。 1.StackOverflow提供技術問題的解答;2.Reddit的r/cpp社區分享最新資訊;3.Coursera和edX提供正式的C 課程;4.GitHub上的開源項目如LLVM和Boost提陞技能;5.專業諮詢服務如JetBrains和Perforce提供技術支持;6.CppCon等會議有助於職業

c#vs. c:每種語言都擅長c#vs. c:每種語言都擅長Apr 12, 2025 am 12:08 AM

C#適合需要高開發效率和跨平台支持的項目,而C 適用於需要高性能和底層控制的應用。 1)C#簡化開發,提供垃圾回收和豐富類庫,適合企業級應用。 2)C 允許直接內存操作,適用於遊戲開發和高性能計算。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境