搜尋
首頁後端開發Python教學4000字詳細說明,推薦20個好用到爆的Pandas函數方法

#今天分享幾個不為人知的 pandas函數,大家可能平常看到的不多,但是使用起來倒是非常的方便,也能夠幫助我們數據分析人員大幅度地提高工作效率,同時也希望大家看完之後能夠有所收穫

  • items()方法
  • #iterrows()方法
  • insert()方法
  • assign()方法
  • eval()方法
  • pop()方法
  • ##truncate()方法
  • count()方法
  • add_prefix()方法/add_suffix ()方法
  • clip()方法
  • filter()方法
  • first()方法
  • isin()方法
  • df.plot.area()方法
  • #df.plot.bar()方法
  • df.plot.box()方法
  • #df.plot.pie()方法

items()方法

#pandas當中的items()方法可以用來遍歷數據集當中的每一列,同時傳回列名以及每一列當中的內容,透過以元組的形式,範例如下
df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
                  'population': [1864, 22000, 80000]},
                  index=['panda', 'polar', 'koala'])
df

output

         species  population
panda       bear        1864
polar       bear       22000
koala  marsupial       80000

然後我們使用items() 方法

for label, content in df.items():
    print(f'label: {label}')
    print(f'content: {content}', sep='\n')
    print("=" * 50)

output

label: species
content: panda         bear
polar         bear
koala    marsupial
Name: species, dtype: object
==================================================
label: population
content: panda     1864
polar    22000
koala    80000
Name: population, dtype: int64
==================================================

相繼的列印出了'species'和'population'這兩列的列名和對應的內容

#iterrows()方法

而對於iterrows()方法而言,其功能則是遍歷資料集當中的每一行,傳回每一行的索引以及帶有列名的每一行的內容,範例如下
for label, content in df.iterrows():
    print(f'label: {label}')
    print(f'content: {content}', sep='\n')
    print("=" * 50)

output

#
label: panda
content: species       bear
population    1864
Name: panda, dtype: object
==================================================
label: polar
content: species        bear
population    22000
Name: polar, dtype: object
==================================================
label: koala
content: species       marsupial
population        80000
Name: koala, dtype: object
==================================================

insert()方法

insert()方法主要是用于在数据集当中的特定位置处插入数据,示例如下

df.insert(1, "size", [2000, 3000, 4000])

output

         species  size  population
panda       bear  2000        1864
polar       bear  3000       22000
koala  marsupial  4000       80000

可见在DataFrame数据集当中,列的索引也是从0开始的

assign()方法

assign()方法可以用来在数据集当中添加新的列,示例如下

df.assign(size_1=lambda x: x.population * 9 / 5 + 32)

output

         species  population    size_1
panda       bear        1864    3387.2
polar       bear       22000   39632.0
koala  marsupial       80000  144032.0
从上面的例子中可以看出,我们通过一个lambda匿名函数,在数据集当中添加一个新的列,命名为‘size_1’,当然我们也可以通过assign()方法来创建不止一个列
df.assign(size_1 = lambda x: x.population * 9 / 5 + 32,
          size_2 = lambda x: x.population * 8 / 5 + 10)

output

         species  population    size_1    size_2
panda       bear        1864    3387.2    2992.4
polar       bear       22000   39632.0   35210.0
koala  marsupial       80000  144032.0  128010.0

eval()方法

eval()方法主要是用来执行用字符串来表示的运算过程的,例如

df.eval("size_3 = size_1 + size_2")

output

         species  population    size_1    size_2    size_3
panda       bear        1864    3387.2    2992.4    6379.6
polar       bear       22000   39632.0   35210.0   74842.0
koala  marsupial       80000  144032.0  128010.0  272042.0

当然我们也可以同时对执行多个运算过程

df = df.eval('''
size_3 = size_1 + size_2
size_4 = size_1 - size_2
''')

output

         species  population    size_1    size_2    size_3   size_4
panda       bear        1864    3387.2    2992.4    6379.6    394.8
polar       bear       22000   39632.0   35210.0   74842.0   4422.0
koala  marsupial       80000  144032.0  128010.0  272042.0  16022.0

pop()方法

pop()方法主要是用来删除掉数据集中特定的某一列数据

df.pop("size_3")

output

panda      6379.6
polar     74842.0
koala    272042.0
Name: size_3, dtype: float64

而原先的数据集当中就没有这个‘size_3’这一例的数据了

truncate()方法

truncate()方法主要是根据行索引来筛选指定行的数据的,示例如下

df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
                   'B': ['f', 'g', 'h', 'i', 'j'],
                   'C': ['k', 'l', 'm', 'n', 'o']},
                  index=[1, 2, 3, 4, 5])

output

   A  B  C
1  a  f  k
2  b  g  l
3  c  h  m
4  d  i  n
5  e  j  o

我们使用truncate()方法来做一下尝试

df.truncate(before=2, after=4)

output

   A  B  C
2  b  g  l
3  c  h  m
4  d  i  n
我们看到参数beforeafter存在于truncate()方法中,目的就是把行索引2之前和行索引4之后的数据排除在外,筛选出剩余的数据

count()方法

count()方法主要是用来计算某一列当中非空值的个数,示例如下

df = pd.DataFrame({"Name": ["John", "Myla", "Lewis", "John", "John"],
                   "Age": [24., np.nan, 25, 33, 26],
                   "Single": [True, True, np.nan, True, False]})

output

    Name   Age Single
0   John  24.0   True
1   Myla   NaN   True
2  Lewis  25.0    NaN
3   John  33.0   True
4   John  26.0  False

我们使用count()方法来计算一下数据集当中非空值的个数

df.count()

output

Name      5
Age       4
Single    4
dtype: int64

add_prefix()方法/add_suffix()方法

add_prefix()方法和add_suffix()方法分别会给列名以及行索引添加后缀和前缀,对于Series()数据集而言,前缀与后缀是添加在行索引处,而对于DataFrame()数据集而言,前缀与后缀是添加在列索引处,示例如下
s = pd.Series([1, 2, 3, 4])

output

0    1
1    2
2    3
3    4
dtype: int64

我们使用add_prefix()方法与add_suffix()方法在Series()数据集上

s.add_prefix('row_')

output

row_0    1
row_1    2
row_2    3
row_3    4
dtype: int64

又例如

s.add_suffix('_row')

output

0_row    1
1_row    2
2_row    3
3_row    4
dtype: int64
而对于DataFrame()形式数据集而言,add_prefix()方法以及add_suffix()方法是将前缀与后缀添加在列索引处的
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})

output

   A  B
0  1  3
1  2  4
2  3  5
3  4  6

示例如下

df.add_prefix("column_")

output

   column_A  column_B
0         1         3
1         2         4
2         3         5
3         4         6

又例如

df.add_suffix("_column")

output

   A_column  B_column
0         1         3
1         2         4
2         3         5
3         4         6

clip()方法

clip()方法主要是通过设置阈值来改变数据集当中的数值,当数值超过阈值的时候,就做出相应的调整
data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
df = pd.DataFrame(data)

output

df.clip(lower = -4, upper = 4)

output

   col_0  col_1
0      4     -2
1     -3     -4
2      0      4
3     -1      4
4      4     -4
我们看到参数lowerupper分别代表阈值的上限与下限,数据集当中超过上限与下限的值会被替代。

filter()方法

pandas当中的filter()方法是用来筛选出特定范围的数据的,示例如下

df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])),
                  index=['A', 'B', 'C', 'D'],
                  columns=['one', 'two', 'three'])

output

   one  two  three
A    1    2      3
B    4    5      6
C    7    8      9
D   10   11     12

我们使用filter()方法来筛选数据

df.filter(items=['one', 'three'])

output

   one  three
A    1      3
B    4      6
C    7      9
D   10     12

我们还可以使用正则表达式来筛选数据

df.filter(regex='e$', axis=1)

output

   one  three
A    1      3
B    4      6
C    7      9
D   10     12

当然通过参数axis来调整筛选行方向或者是列方向的数据

df.filter(like='B', axis=0)

output

   one  two  three
B    4    5      6

first()方法

当数据集当中的行索引是日期的时候,可以通过该方法来筛选前面几行的数据

index_1 = pd.date_range('2021-11-11', periods=5, freq='2D')
ts = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=index_1)
ts

output

            A
2021-11-11  1
2021-11-13  2
2021-11-15  3
2021-11-17  4
2021-11-19  5

我们使用first()方法来进行一些操作,例如筛选出前面3天的数据

ts.first('3D')

output

            A
2021-11-11  1
2021-11-13  2

isin()方法

isin()方法主要是用来确认数据集当中的数值是否被包含在给定的列表当中

df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])),
                  index=['A', 'B', 'C', 'D'],
                  columns=['one', 'two', 'three'])
df.isin([3, 5, 12])

output

     one    two  three
A  False  False   True
B  False   True  False
C  False  False  False
D  False  False   True
若是数值被包含在列表当中了,也就是3、5、12当中,返回的是True,否则就返回False

df.plot.area()方法

下面我们来讲一下如何在Pandas当中通过一行代码来绘制图表,将所有的列都通过面积图的方式来绘制
df = pd.DataFrame({
    'sales': [30, 20, 38, 95, 106, 65],
    'signups': [7, 9, 6, 12, 18, 13],
    'visits': [20, 42, 28, 62, 81, 50],
}, index=pd.date_range(start='2021/01/01', end='2021/07/01', freq='M'))

ax = df.plot.area(figsize = (10, 5))

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.bar()方法

下面我们看一下如何通过一行代码来绘制柱状图

df = pd.DataFrame({'label':['A', 'B', 'C', 'D'], 'values':[10, 30, 50, 70]})
ax = df.plot.bar(x='label', y='values', rot=20)

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

当然我们也可以根据不同的类别来绘制柱状图

age = [0.1, 17.5, 40, 48, 52, 69, 88]
weight = [2, 8, 70, 1.5, 25, 12, 28]
index = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
df = pd.DataFrame({'age': age, 'weight': weight}, index=index)
ax = df.plot.bar(rot=0)

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

当然我们也可以横向来绘制图表

ax = df.plot.barh(rot=0)

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.box()方法

我们来看一下箱型图的具体的绘制,通过pandas一行代码来实现

data = np.random.randn(25, 3)
df = pd.DataFrame(data, columns=list('ABC'))
ax = df.plot.box()

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.pie()方法

接下来是饼图的绘制

df = pd.DataFrame({'mass': [1.33, 4.87 , 5.97],
                   'radius': [2439.7, 6051.8, 6378.1]},
                  index=['Mercury', 'Venus', 'Earth'])
plot = df.plot.pie(y='mass', figsize=(8, 8))

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

除此之外,还有折线图、直方图、散点图等等,步骤与方式都与上述的技巧有异曲同工之妙,大家感兴趣的可以自己另外去尝试。

以上是4000字詳細說明,推薦20個好用到爆的Pandas函數方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:Python当打之年。如有侵權,請聯絡admin@php.cn刪除
Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器