搜尋
首頁常見問題技巧 | 6種常用的地圖繪製方法


今天來講一講在日常工作生活中我常用的幾種繪製地圖的方法,以下我將介紹以下這些視覺化函式庫的地圖繪製方法,當然繪製漂亮的視覺化地圖還有很多優秀的類別庫,沒有辦法一一列舉

pyecharts、plotly、folium、 bokeh、basemap、geopandas、cartopy

#Boken

首先我們先介紹Boken 繪製地圖的方法

Bokeh 支援創建基本地圖視覺化和基於處理地理資料的地圖視覺化

畫一張世界地圖

from bokeh.plotting import figure, show
from bokeh.tile_providers import CARTODBPOSITRON, get_provider
from bokeh.io import output_notebook


output_notebook()
tile_provider = get_provider(CARTODBPOSITRON)

p = figure(x_range=(-2000000, 6000000), y_range=(-1000000, 7000000),
           x_axis_type="mercator", y_axis_type="mercator")
p.add_tile(tile_provider)

show(p)

技巧 | 6種常用的地圖繪製方法

再畫一張中國地圖看看

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource
from bokeh.io import show

# 读入中国地图数据并传给GeoJSONDataSource
with open("china.json", encoding="utf8") as f:
    geo_source = GeoJSONDataSource(geojson=f.read())
# 设置一张画布
p = figure(width=500, height=500)
# 使用patches函数以及geo_source绘制地图
p.patches(xs='xs', ys='ys', source=geo_source)
show(p)

技巧 | 6種常用的地圖繪製方法

我們透過GEO 地理資料來繪製地圖同樣非常方便,但是地圖看起來有一些單調,我們把不同的省份繪製成不同的顏色來看看

with open("china.json", encoding="utf8") as f:
    data = json.loads(f.read())
# 判断是不是  北京地区数据
def isBeijing(district):
    if 'beijing' in district['properties']['woe-name'].lower():
        return True
    return False
# data['features'] = list(filter(isInLondon, data['features']))
# 过滤数据
# 为每一个地区增加一个color属性
for i in range(len(data['features'])):
    data['features'][i]['properties']['color'] = ['red', 'blue', 'yellow', 'orange', 'gray', 'purple'][i % 6]
    data['features'][i]['properties']['number'] = random.randint(0, 20_000)
geo_source = GeoJSONDataSource(geojson=json.dumps(data))
p = figure(width=500, height=500, tooltips="@name, number: @number")
p.patches(xs='xs', ys='ys', fill_alpha=0.7,
        line_color='white',
        line_width=0.5,
        color="color",   # 增加颜色属性,这里的"color"对应每个地区的color属性
        source=geo_source)
p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None

show(p)

技巧 | 6種常用的地圖繪製方法

可以看到已經有內味了,唯一美中不足的就是南海的十三段線沒有展示出來

geopandas

GeoPandas 是基于 Pandas 的地图可视化工具,其数据结构完全继承自 Pandas,对于熟悉潘大师的同学来说还是非常友好的

还是先画一张世界地图

import pandas as pd
import geopandas
import matplotlib.pyplot as plt
%matplotlib inline

world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
world.plot()
plt.show()

技巧 | 6種常用的地圖繪製方法

这也是 geopandas 官网上的经典图片,可以看到非常简单,除去 import 代码,仅仅三行,就完成了地图的绘制

下面我们继续绘制中国地图,这次我们加上九段线信息

china_nine = geopandas.read_file(r"geojson/九段线GS(2019)1719号.geojson")
china = geopandas.read_file('china-new.json')
fig, ax = plt.subplots(figsize=(12, 8),dpi=80)
ax = china.plot(ax=ax, column='number')
ax = china_nine.plot(ax=ax)
plt.show()

技巧 | 6種常用的地圖繪製方法

我们复用了前面处理的 china.json 数据,里面的 number 字段是随机生成的测试数据,效果与 Bokeh 不相上下

plotly

接下来我们介绍 plotly,这也是一个非常好用的 Python 可视化工具,如果要绘制地图信息,我们需要安装如下依赖

!pip install geopandas==0.3.0
!pip install pyshp==1.2.10
!pip install shapely==1.6.3

接下来我们先绘制一个世界地图

import plotly.graph_objects as go

fig = go.Figure(go.Scattermapbox(
    mode = "markers+lines",
    lon = [10, 20, 30],
    lat = [10, 20,30],
    marker = {'size': 10}))

fig.add_trace(go.Scattermapbox(
    mode = "markers+lines",
    lon = [-50, -60,40],
    lat = [30, 10, -20],
    marker = {'size': 10}))

fig.update_layout(
    margin ={'l':0,'t':0,'b':0,'r':0},
    mapbox = {
        'center': {'lon': 113.65000, 'lat': 34.76667},
        'style': "stamen-terrain",
        'center': {'lon': -20, 'lat': -20},
        'zoom': 1})

fig.show()

这里我们使用底层 API plotly.graph_objects.Choroplethmapbox 来绘制

技巧 | 6種常用的地圖繪製方法

下面我们继续绘制中国地图,使用一个高级 API plotly.express.choropleth_mapbox

import pandas as pd
import plotly.express as px
import numpy as np
import json

with open(r"china_province.geojson", encoding='utf8') as f:
    provinces_map = json.load(f)

df = pd.read_csv(r'data.csv')
df.确诊 = df.确诊.map(np.log)

fig = px.choropleth_mapbox(
    df,
    geojson=provinces_map,
    color='确诊',
    locations="地区",
    featureidkey="properties.NL_NAME_1",
    mapbox_style="carto-darkmatter",
    color_continuous_scale='viridis',
    center={"lat": 37.110573, "lon": 106.493924},
    zoom=3,
)
fig.show()

技巧 | 6種常用的地圖繪製方法

可以看出绘制出的交互式地图还是非常漂亮的,不过渲染速度有些感人,这个就看个人的需求了,如果你对渲染速度有要求,那么 Ployly 可能不是最好的选择~

Cartopy/Basemap

之所以把这两个库放到一起,是因为他们都是基于 Matplotlib 之上的,而随着 Python2 的不再维护,Basemap 也被 Matplotlib 放弃,Cartopy 随之转正,下面我们主要介绍 Cartopy 工具

Cartopy 利用了强大的 PROJ.4、NumPy 和 Shapely 库,并在 Matplotlib 之上构建了一个编程接口,用于创建发布高质量的地图

先来绘制一个世界地图

%matplotlib inline
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()

plt.show()

技巧 | 6種常用的地圖繪製方法

这是一个 cartopy 绘制的非常经典且常见的世界地图,形式比较简单,下面我们增强该地图

import datetime
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
from cartopy.feature.nightshade import Nightshade


fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())

date = datetime.datetime(2021, 12, 2, 21)

ax.set_title(f'Night time shading for {date}')
ax.stock_img()
ax.add_feature(Nightshade(date, alpha=0.2))
plt.show()

技巧 | 6種常用的地圖繪製方法

我们通过上面的代码,绘制了当前时间世界昼夜图,还是很强的

下面我们继续绘制中国地图

import cartopy.io.shapereader as shpreader
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cartopy.io.shapereader as shapereader
import matplotlib.ticker as mticker
#从文件中加载中国区域shp
shpfile = shapereader.Reader(r'ne_10m_admin_0_countries_chn\ne_10m_admin_0_countries_chn.shp')
# 设置 figure 大小
fig = plt.figure(figsize=[8, 5.5])
# 设置投影方式并绘制主图
ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180))
ax.add_geometries(
        shpfile.geometries(),
        ccrs.PlateCarree())
ax.set_extent([70, 140, 0, 55],crs=ccrs.PlateCarree())
plt.show()

技巧 | 6種常用的地圖繪製方法

使用 cartopy 绘制地图最大的特点就是灵活度高,那么相对应的代价就是编写代码也会更难一些,比如如果想要给不同省份填充不同颜色,我们需要编写的代码就有点多

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import shapely.geometry as sgeom

import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) 

def sample_data():
#    lons = [110, 115, 120, 122, 124 ]
    lons = [124, 122, 120, 115, 110 ]
    lats = [33, 32, 28, 30, 28 ]
    return lons, lats

#ax = plt.axes([0, 0, 1, 1], projection=ccrs.LambertConformal())
ax = plt.axes(projection=ccrs.PlateCarree())


ax.set_extent([70, 140, 0, 55],crs=ccrs.Geodetic())

shapename = 'admin_1_states_provinces'
states_shp = shpreader.natural_earth(resolution='10m', category='cultural', name=shapename)


lons, lats = sample_data()

# to get the effect of having just the states without a map "background"
# turn off the outline and background patches
ax.background_patch.set_visible(False)
ax.outline_patch.set_visible(False)

plt.title(u'China Province Level', fontproperties=font)

# turn the lons and lats into a shapely LineString
track = sgeom.LineString(zip(lons, lats))

track_buffer = track.buffer(1)

for state in shpreader.Reader(states_shp).geometries():
    # pick a default color for the land with a black outline,
    # this will change if the storm intersects with our track
    facecolor = [0.9375, 0.9375, 0.859375]
    edgecolor = 'black'

    if state.intersects(track):
        facecolor = 'red'
    elif state.intersects(track_buffer):
        facecolor = '#FF7E00'

    ax.add_geometries([state], ccrs.PlateCarree(),
                      facecolor=facecolor, edgecolor=edgecolor)


# make two proxy artists to add to a legend
direct_hit = mpatches.Rectangle((0, 0), 1, 1, facecolor="red")
within_2_deg = mpatches.Rectangle((0, 0), 1, 1, facecolor="#FF7E00")
labels = [u'省份level1',
          '省份level2']
plt.legend([direct_hit, within_2_deg], labels,
           loc='lower left', bbox_to_anchor=(0.025, -0.1), fancybox=True, prop=font)
ax.figure.set_size_inches(14, 9)
plt.show()

技巧 | 6種常用的地圖繪製方法

folium

folium 是建立在 Python 生态系统的数据应用能力和 Leaflet.js 库的映射能力之上的高级地图绘制工具,通过 Python 操作数据,然后在 Leaflet 地图中可视化,可以灵活的自定义绘制区域,并且展现形式更加多样化

首先是三行代码绘制世界地图

import folium


# define the world map
world_map = folium.Map()
# display world map
world_map

技巧 | 6種常用的地圖繪製方法

接下来绘制中国地图

# 绘制边界
import json

df = pd.read_csv(r'plotly-choropleth-mapbox-demo-master/data.csv')
# read china border 
with open(r"plotly-choropleth-mapbox-demo-master/china_province.geojson", encoding='utf8') as f:
    china = json.load(f)

chn_map = folium.Map(location=[40, 100], zoom_start=4)


folium.Choropleth(
    geo_data=china,
    name="choropleth",
    data=df,
    columns=["地区", "确诊"],
    key_on="properties.NL_NAME_1",
    fill_color="YlGn",
    fill_opacity=0.7,
    line_opacity=0.2,
    legend_name="新冠确诊",
).add_to(chn_map)

folium.LayerControl().add_to(chn_map)

chn_map

技巧 | 6種常用的地圖繪製方法

作为专业地图工具,不仅渲染速度快,自定义程度也是非常高的,值得使用尝试

PyEcharts

最后我们介绍 PyEcharts,这款国产的精良可视化工具 

绘制世界地图

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker


c = (
    Map()
    .add("测试数据", [list(z) for z in zip(Faker.country, Faker.values())], "world")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Map-世界地图"),
        visualmap_opts=opts.VisualMapOpts(max_=200),
    )
)
c.render_notebook()

技巧 | 6種常用的地圖繪製方法

通过 Pyecharts 绘制地图的一个好处就是不需要处理 GEO 文件,我们直接出入国家名称,就可以自动匹配到地图上,非常方便

再绘制中国地图

c = (
    Map()
    .add("测试数据", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Map-VisualMap(中国)"),
        visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
    )
)
c.render_notebook()

技巧 | 6種常用的地圖繪製方法

我们只需要把参数替换成 ”china“ 就可方便的绘制中国地图,真的很给力,当然对于 Pyecharts 还有很多种玩法,就不一一介绍了

技巧 | 6種常用的地圖繪製方法

综合上面的示例,我们可以看出, Pyecharts 绘制地图最为简单,非常适合新手学习使用;而 folium 和 cartopy 则胜在自由度上,它们作为专业的地图工具,留给了使用者无限可能;至于 Plotly Bokeh 则属于更高级的可视化工具,它们胜在画质更加优美,API 调用也更加完善

技巧 | 6種常用的地圖繪製方法

今天我们介绍了几种比较常用的绘制地图的类库,每一个工具都有其优缺点,我们只需要在选择的时候,明确目标,用心探索就好!

参考:https://gitee.com/kevinqqnj/cartopy_trial/blob/master/cartopy_province.py
https://zhuanlan.zhihu.com/p/112324234


##### ## ####

以上是技巧 | 6種常用的地圖繪製方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:Python当打之年。如有侵權,請聯絡admin@php.cn刪除

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器