搜尋
首頁運維linux運維RISC-V Linux啟動之頁表建立分析

上篇分析了RISC-V Linux的彙編啟動過程,其中講到了relocate重定向需要開啟MMU,今天分析RISC-V Linux的頁表建立。

注意:本文基於linux5.10.111核心

#sv39 mmu

RISC-V Linux啟動之頁表建立分析

RISC-V Linux支援
sv32RISC-V Linux啟動之頁表建立分析
sv39

sv48
等虛擬位址格式,分別代表32為虛擬位址、38位元虛擬位址和48位元虛擬地址。 RISC-V Linux預設也是使用sv39格式,sv39的虛擬位址、實體位址、PTE格式如下:RISC-V Linux啟動之頁表建立分析
虛擬位址格式:

#######實體位址格式:###############PTE格式:################虛擬位址使用39位表示,其中低12位元代表page offset,高位為了三個部分劃分:VP N[0]、VP N[1]和VP N[2],分別代表虛擬位址VA在PTE、PMD和PGD中的索引。 ###

物理位址使用56位元表示,低12位元代表page offset,高位元是物理頁PPN[0]、PPN[1]和PPN[2]

PTE保存了物理頁PPN[0] 、PPN[1]和PPN[2],和物理位址中的PPN相對應;PTE的低10位元代表物理位址的存取權限,當RWX全為0時,則代表該PTE儲存的位址是下一級頁表的實體位址,否則代表目前頁表是最後一級頁表

再看看sv39 的頁表格式,sv39使用的是三級頁表,PGDPMDPTE,每一個級頁表使用9bit表示,即每一級頁表都有512個頁表項。

在程式碼中,建立一個有512個元素的陣列即代表一個頁表。一個PTE有512個頁表項,每個頁表項佔用8字節,512*8=4096字節,所以一個PTE代表4K。一個PMD也是512個頁表項,每一項可代表一個PTE,512 *4 K=2M,所以一個PMD就代表2M。以此類推,一個PGD代表512 * 2M=1G。

重要結論:PGD代表1G、PMD代表2M、PTE代表4K。 sv39預設的頁大小是4K

三級頁表虛擬位址轉為實體位址流程示意圖:RISC-V Linux啟動之頁表建立分析

sv39三級頁表虛擬位址轉為實體位址過程:

MMU透過satp暫存器得到PGD的實體位址,結合PGD index(即V PN[2])找到PMD;找到PMD後,再結合PMD index(即V PN[1])找到PTE,然後結合PTE index(即V PN[0 ])得到VA在PTE索引中的值,從而得到實體位址。

最後在PTE中取出PPN[2]、PPN[1]和PPN[0],再和虛擬位址的低12位元offset相加,得到最終的實體位址。

臨時頁表分析

MMU開啟前,需要建立好kernel、dtb、trampoline等頁表。以便MMU開啟後,並且在記憶體管理模組運行之前,kernel可以正常初始化,dtb可以正常地被解析。這部分頁表都是臨時頁表,最終的頁表在setup_vm_final()建立。

臨時頁表建立順序:

首先為fixmap建立早期的PGD、PMD,這時PGD使用early_pg_dir。接著對從kernel開始的前2M記憶體建立二級頁表,此時PGD使用trampoline_pg_dir,為這2M建立的頁表也叫作superpage。再然後,對整個kernel建立二級頁表,此時PGD使用early_pg_dir。最後為dtb預留4M大小建立二級頁表。

頁表建立函數

#create_pgd_mapping()

#
void __init create_pgd_mapping(pgd_t *pgdp,
          uintptr_t va, phys_addr_t pa,
          phys_addr_t sz, pgprot_t prot)

pgdp:PGD頁表

#va:虛擬位址

##pa:實體位址

sz:映射大小,PGDIR_SIZE或PMD_SIZE或PTE_SIZE

prot:PAGE_KERNEL_EXEC/PAGE_KERNEL表示当前是最后一级页表,否则pa代表下一级页表的物理地址

create_pmd_mapping()

static void __init create_pmd_mapping(pmd_t *pmdp,
          uintptr_t va, phys_addr_t pa,
          phys_addr_t sz, pgprot_t prot)

pmdp:PMD页表

va:虚拟地址

pa:物理地址

sz:映射大小,PMD_SIZE或PAGE_SIZE

prot:权限,PAGE_KERNEL_EXEC/PAGE_KERNEL表示当前是最后一级页表,否则pa代表下一级页表的物理地址

create_pte_mapping()

static void __init create_pte_mapping(pte_t *ptep,
          uintptr_t va, phys_addr_t pa,
          phys_addr_t sz, pgprot_t prot)

ptep:PTE页表

va:虚拟地址

pa:物理地址

sz:映射大小,PAGE_SIZE

prot:权限,PAGE_KERNEL_EXEC/PAGE_KERNEL表示当前是最后一级页表,否则pa代表下一级页表的物理地址

使用举例

例如,将虚拟地址PAGE_OFFSET映射到物理地址pa,映射大小为4K,创建三级页表PGD、PMD和PTE:

create_pgd_mapping(early_pg_dir,PAGE_OFFSET,
                   (uintptr_t)early_pmd,PGDIR_SIZE,PAGE_TABLE);
create_pmd_mapping(early_pmd,PAGE_OFFSET,
                   (uintptr_t)early_pte,PGDIR_SIZE,PAGE_TABLE);
create_pte_mapping(early_pte,PAGE_OFFSET,
                   (uintptr_t)pa,PAGE_SIZE,PAGE_KERNEL_EXEC);

这样创建后,MMU就会根据PAGE_OFFSET在PGD中找到PMD,然后再PMD中找到PTE,最后取出物理地址。

页表创建源码分析

RISC-V Linux启动,经历了两次页表创建过程,第一次使用C函数setup_vm()创建临时页表,第二次使用C函数setup_vm_final()创建最终页表。

具体细节参考代码中的注释,下面的代码省略了一些不重要的部分。

setup_vm()

asmlinkage void __init setup_vm(uintptr_t dtb_pa)
{
 uintptr_t va, pa, end_va;
 uintptr_t load_pa = (uintptr_t)(&_start);
 uintptr_t load_sz = (uintptr_t)(&_end) - load_pa;
 uintptr_t map_size;
 //load_pa就是kernel加载的其实物理地址
    //load_sz就是kernel的实际大小

    //page_offset就是kernel的起始物理地址对应的虚拟地址,va_pa_offset是他们的偏移量
 va_pa_offset = PAGE_OFFSET - load_pa;
    
    //计算得到kernel起始物理地址的物理页,PFN_DOWN是将物理地址右移12位,因为sv39的物理地址的低12位是pa_offset,所以右移12位,得到pfn
 pfn_base = PFN_DOWN(load_pa);

 map_size = PMD_SIZE;//PMD_SIZE为2M,在当前,map_size只能为PGDIR_SIZE或PMD_SIZE。这时kernel默认不允许建立PTE。

 //检查PAGE_OFFSET是否1G对齐,以及kernel入口地址是否2M对齐
 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
 BUG_ON((load_pa % map_size) != 0);

    //allc_pte_early里面是BUG(),对于临时页表,kernel不允许我们建立PTE
 pt_ops.alloc_pte = alloc_pte_early;
 pt_ops.get_pte_virt = get_pte_virt_early;
#ifndef __PAGETABLE_PMD_FOLDED
 pt_ops.alloc_pmd = alloc_pmd_early;
 pt_ops.get_pmd_virt = get_pmd_virt_early;
#endif
 /* 设置 early PGD for fixmap */
 create_pgd_mapping(early_pg_dir, FIXADDR_START,
      (uintptr_t)fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);


 /* 设置 fixmap PMD */
 create_pmd_mapping(fixmap_pmd, FIXADDR_START,
      (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
 /* 设置 trampoline PGD and PMD */
 create_pgd_mapping(trampoline_pg_dir, PAGE_OFFSET,
      (uintptr_t)trampoline_pmd, PGDIR_SIZE, PAGE_TABLE);
 create_pmd_mapping(trampoline_pmd, PAGE_OFFSET,
      load_pa, PMD_SIZE, PAGE_KERNEL_EXEC);

 /*
  * 设置覆盖整个内核的早期PGD,这将使我们能够达到paging_init()。
  * 稍后在下面的 setup_vm_final() 中映射所有内存。
  */
 end_va = PAGE_OFFSET + load_sz;
 for (va = PAGE_OFFSET; va < end_va; va += map_size)
  create_pgd_mapping(early_pg_dir, va,
       load_pa + (va - PAGE_OFFSET),
       map_size, PAGE_KERNEL_EXEC);

 /* 为dtb创建早期的PMD */
 create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA,
      (uintptr_t)early_dtb_pmd, PGDIR_SIZE, PAGE_TABLE);
 /* 为 FDT 早期扫描创建两个连续的 PMD 映射 */
 pa = dtb_pa & ~(PMD_SIZE - 1);
 create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA,
      pa, PMD_SIZE, PAGE_KERNEL);
 create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA + PMD_SIZE,
      pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
 dtb_early_va = (void *)DTB_EARLY_BASE_VA + (dtb_pa & (PMD_SIZE - 1));
 ......

}

setup_vm()在最开始就进行了kernel入口地址的对齐检查,要求入口地址2M对齐。假设内存起始地址为0x80000000,那么kernel只能放在0x80000000、0x80200000等2M对齐处。为什么会有这种对齐要求呢?

我猜测单纯是为给opensbi预留了2M空间,因为kernel之前还有opensbi,而opensbi运行完之后,默认跳转地址就是偏移2M,kernel只是为了跟opensbi对应,所以设置了2M对齐。

那opensbi需要占用2M这么大?实际上只需要几百KB,因此opensbi和kernel中间有一段内存是空闲的,没有人使用。这个问题我们下篇再讲。

setup_vm_final()

在该函数中开始为整个物理内存做内存映射,通过swapper页表来管理,并且清除掉汇编阶段的页表。

static void __init setup_vm_final(void)
{
 uintptr_t va, map_size;
 phys_addr_t pa, start, end;
 u64 i;

 /**
  * 此时MMU已经开启,但是页表还没完全建立。
  */
 pt_ops.alloc_pte = alloc_pte_fixmap;
 pt_ops.get_pte_virt = get_pte_virt_fixmap;
#ifndef __PAGETABLE_PMD_FOLDED
 pt_ops.alloc_pmd = alloc_pmd_fixmap;
 pt_ops.get_pmd_virt = get_pmd_virt_fixmap;
#endif
 /* Setup swapper PGD for fixmap */
 create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
      __pa_symbol(fixmap_pgd_next),
      PGDIR_SIZE, PAGE_TABLE);

 /* 为整个物理内存创建页表 */
 for_each_mem_range(i, &start, &end) {
  if (start >= end)
   break;
  if (start <= __pa(PAGE_OFFSET) &&
      __pa(PAGE_OFFSET) < end)
   start = __pa(PAGE_OFFSET);

        //best_map_size是选择合适的映射大小,kernel入口地址2M对齐或者kernel大小能被2M整除时,map_size就是2M,否则就是4K。
  map_size = best_map_size(start, end - start);
  for (pa = start; pa < end; pa += map_size) {
   va = (uintptr_t)__va(pa);
   create_pgd_mapping(swapper_pg_dir, va, pa,
        map_size, PAGE_KERNEL_EXEC);
  }
 }

 /* 清除fixmap的PMD和PTE */
 clear_fixmap(FIX_PTE);
 clear_fixmap(FIX_PMD);

 /* 切换到swapper页表,这个是最终的页表,汇编阶段relocate开启MMU的操作,跟下面这句是一样的。 */
 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | SATP_MODE);
 local_flush_tlb_all();//刷新TLB

 ......
}

说明:

在setup_vm_final()函数中,通过swapper_pg_dir页表来管理整个物理内存的访问。并且清除汇编阶段的页表fixmap_pte和early_pg_dir。(本质上就是把该页表项的内容清0,即赋值为0)

最终把swapper_pg_dir页表的物理地址赋值给SATP寄存器。这样CPU就可以通过该页表访问整个物理内存。

切换页表通过如下实现:

csr_write(CSR_SATP,PFN_DOWN(_pa(swapper_pg_dir))|SATP_MODE);

在swapper_pg_dir管理的kernel space中,其虚拟地址与物理地址空间的偏移是固定的,为va_pa_offset(定义在arch/riscv/mm/init.c中的一个全局变量)

注意:swapper_pg_dir管理的是kernel space的页表,即它把物理内存映射到的虚拟地址空间是只能kernel访问的。user space不能访问,用户空间如果访问,必须自行建立页表,把物理地址映射到user space的虚拟地址空间。kernel线程共享这个swapper_pg_dir页表。

總結

RISC-V Linux啟動時的頁表建立相對來說還是比較容易理解的,都是C語言創建的,程式碼也比較少。主要就是setup_vm()和setup_vm_final()兩個頁表建立函式。理解了sv39的一些位址格式後,再去分析原始碼就比較容易。不過不同kernel版本程式碼都不一樣,需要具體情況具體分析。

本篇提到了setup_vm()會檢查kernel入口位址是否2M對齊,如果不對齊kernel無法啟動,但其實我們可以解除這個2M對齊限制,將這部分空間利用起來,下篇教大家優化這部分記憶體。

#

以上是RISC-V Linux啟動之頁表建立分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:嵌入式Linux充电站。如有侵權,請聯絡admin@php.cn刪除
Linux:進入和退出維護模式Linux:進入和退出維護模式May 02, 2025 am 12:01 AM

進入Linux維護模式的方法包括:1.編輯GRUB配置文件,添加"single"或"1"參數並更新GRUB配置;2.在GRUB菜單中編輯啟動參數,添加"single"或"1"。退出維護模式只需重啟系統。通過這些步驟,你可以在需要時快速進入維護模式,並安全地退出,確保系統的穩定性和安全性。

了解Linux:定義的核心組件了解Linux:定義的核心組件May 01, 2025 am 12:19 AM

Linux的核心組件包括內核、shell、文件系統、進程管理和內存管理。 1)內核管理系統資源,2)shell提供用戶交互界面,3)文件系統支持多種格式,4)進程管理通過fork等系統調用實現,5)內存管理使用虛擬內存技術。

Linux的構建塊:關鍵組件解釋了Linux的構建塊:關鍵組件解釋了Apr 30, 2025 am 12:26 AM

Linux系統的核心組成部分包括內核、文件系統和用戶空間。 1.內核管理硬件資源並提供基本服務。 2.文件系統負責數據存儲和組織。 3.用戶空間運行用戶程序和服務。

使用維護模式:故障排除和修復Linux使用維護模式:故障排除和修復LinuxApr 29, 2025 am 12:28 AM

維護模式是Linux系統中通過單用戶模式或救援模式進入的特殊運行級別,用於系統維護和修復。 1.進入維護模式使用命令“sudosystemctlisolaterescue.target”。 2.在維護模式中,可以檢查並修復文件系統,使用命令“fsck/dev/sda1”。 3.高級用法包括重置root用戶密碼,需掛載文件系統為讀寫模式並編輯密碼文件。

Linux維護模式:了解目的Linux維護模式:了解目的Apr 28, 2025 am 12:01 AM

維護模式用於系統維護和修復,允許管理員在簡化環境中工作。 1.系統修復:修復損壞的文件系統和啟動加載器。 2.密碼重置:重置root用戶密碼。 3.軟件包管理:安裝、更新或刪除軟件包。通過修改GRUB配置或使用特定鍵進入維護模式,執行維護任務後可安全退出。

Linux操作:網絡和網絡配置Linux操作:網絡和網絡配置Apr 27, 2025 am 12:09 AM

Linux網絡配置可以通過以下步驟完成:1.配置網絡接口,使用ip命令臨時設置或編輯配置文件持久化設置。 2.設置靜態IP,適合需要固定IP的設備。 3.管理防火牆,使用iptables或firewalld工具來控製網絡流量。

Linux中的維護模式:系統管理員指南Linux中的維護模式:系統管理員指南Apr 26, 2025 am 12:20 AM

維護模式在Linux系統管理中扮演關鍵角色,幫助進行系統修復、升級和配置變更。 1.進入維護模式可以通過GRUB菜單選擇或使用命令“sudosystemctlisolaterescue.target”。 2.在維護模式下,可以執行文件系統修復和系統更新等操作。 3.高級用法包括重置root密碼等任務。 4.常見錯誤如無法進入維護模式或掛載文件系統,可通過檢查GRUB配置和使用fsck命令修復。

Linux中的維護模式:何時以及為什麼使用它Linux中的維護模式:何時以及為什麼使用它Apr 25, 2025 am 12:15 AM

使用Linux維護模式的時機和原因:1)系統啟動問題時,2)進行重大系統更新或升級時,3)執行文件系統維護時。維護模式提供安全、控制的環境,確保操作的安全性和效率,減少對用戶的影響,並增強系統的安全性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器