如何用PHP進行資料預處理與特徵工程
資料預處理和特徵工程是資料科學中非常重要的步驟,它們可以幫助我們清洗資料、處理缺失值、進行特徵提取和轉換,以及準備機器學習和深度學習模型所需的輸入資料。在本文中,我們將討論如何用PHP進行資料預處理和特徵工程,並提供一些程式碼範例來幫助你入門。
$csvFile = 'data.csv'; $data = []; if (($handle = fopen($csvFile, 'r')) !== false) { while (($row = fgetcsv($handle)) !== false) { $data[] = $row; } fclose($handle); } // 打印数据 print_r($data);
foreach ($data as &$row) { for ($i = 0; $i < count($row); $i++) { if ($row[$i] === null || $row[$i] === '') { // 填充缺失值为0 $row[$i] = 0; } } }
foreach ($data as &$row) { for ($i = 0; $i < count($row); $i++) { if ($row[$i] < $lowerThreshold || $row[$i] > $upperThreshold) { // 替换异常值为平均值 $row[$i] = $meanValue; } } }
$newData = []; $uniqueKeys = []; foreach ($data as $row) { $key = implode('-', $row); if (!in_array($key, $uniqueKeys)) { $newData[] = $row; $uniqueKeys[] = $key; } } // 更新数据 $data = $newData;
$categories = ['cat', 'dog', 'rabbit']; $encodedData = []; foreach ($data as $row) { $encodedRow = []; foreach ($row as $value) { if (in_array($value, $categories)) { // 使用数字编码离散特征值 $encodedRow[] = array_search($value, $categories); } else { // 原样保留其他特征值 $encodedRow[] = $value; } } $encodedData[] = $encodedRow; }
$normalizedData = []; foreach ($data as $row) { $mean = array_sum($row) / count($row); // 计算平均值 $stdDev = sqrt(array_sum(array_map(function ($value) use ($mean) { return pow($value - $mean, 2); }, $row)) / count($row)); // 计算标准差 $normalizedRow = array_map(function ($value) use ($mean, $stdDev) { // 标准化特征值 return ($value - $mean) / $stdDev; }, $row); $normalizedData[] = $normalizedRow; }
require 'vendor/autoload.php'; use PhpmlClusteringKMeans; $clusterer = new KMeans(3); // 设定聚类数为3 $clusterer->train($normalizedData); $clusterLabels = $clusterer->predict($normalizedData); // 打印聚类结果 print_r($clusterLabels);
以上是如何用PHP進行資料預處理和特徵工程的簡單範例。當然,資料預處理和特徵工程還有很多其他操作和技巧,具體的選擇和實現方式可以根據特定問題和需求來決定。希望本文能幫助你入門資料預處理和特徵工程,並為你進行機器學習和深度學習模型的訓練打下堅實的基礎。
以上是如何用PHP進行資料預處理與特徵工程的詳細內容。更多資訊請關注PHP中文網其他相關文章!