一、前言
在Thread和Process中,應優選Process,因為Process更穩定,而且,Process可以分佈在多台機器上,而Thread最多只能分佈到同一台機器的多個CPU上。
Python的multiprocessing模組不但支援多進程,其中managers子模組還支援把多進程分佈到多台機器上。可以寫一個服務進程作為調度者,將任務分散到其他多個進程中,並依靠網路通訊進行管理。
二、案例分析
在做爬蟲程式時,抓取某個網站的所有圖片,如果使用多進程的話,一般是一個進程負責抓取圖片的連結位址,將連結位址放到queue中,另外的進程負責從queue中取連結位址進行下載和儲存到本地。
怎麼用分散式進程實作?
一台機器上的進程負責抓取連結位址,其他機器上的進程負責繫在儲存中。那麼遇到的主要問題是將queue 暴露到網路中,讓其他機器進程都可以訪問,分散式進程就是將這個過程進行了封裝,可以將這個過程稱為本地隊列的網路化。
範例:
1.py
from multiprocessing.managers import BaseManager from multiprocessing import freeze_support, Queue # 任务个数 task_number = 10 # 收发队列 task_quue = Queue(task_number) result_queue = Queue(task_number) def get_task(): return task_quue def get_result(): return result_queue # 创建类似的queueManager class QueueManager(BaseManager): pass def win_run(): # 注册在网络上,callable 关联了Queue 对象 # 将Queue对象在网络中暴露 # window下绑定调用接口不能直接使用lambda,所以只能先定义函数再绑定 QueueManager.register('get_task_queue', callable=get_task) QueueManager.register('get_result_queue', callable=get_result) # 绑定端口和设置验证口令 manager = QueueManager(address=('127.0.0.1', 8001), authkey='qiye'.encode()) # 启动管理,监听信息通道 manager.start() try: # 通过网络获取任务队列和结果队列 task = manager.get_task_queue() result = manager.get_result_queue() # 添加任务 for url in ["ImageUrl_" + str(i) for i in range(10)]: print('url is %s' % url) task.put(url) print('try get result') for i in range(10): print('result is %s' % result.get(timeout=10)) except: print('Manager error') finally: manager.shutdown() if __name__ == '__main__': freeze_support() win_run()
連接伺服器,連接埠和驗證口令注意保持與伺服器進程中完全一致從網路取得Queue,進行本地化,從task佇列取得任務,並且把結果寫入result佇列
2.py
#coding:utf-8 import time from multiprocessing.managers import BaseManager # 创建类似的Manager: class Manager(BaseManager): pass #使用QueueManager注册获取Queue的方法名称 Manager.register('get_task_queue') Manager.register('get_result_queue') #连接到服务器: server_addr = '127.0.0.1' print('Connect to server %s...' % server_addr) # 端口和验证口令注意保持与服务进程设置的完全一致: m = Manager(address=(server_addr, 8001), authkey='qiye') # 从网络连接: m.connect() #获取Queue的对象: task = m.get_task_queue() result = m.get_result_queue() #从task队列取任务,并把结果写入result队列: while(not task.empty()): image_url = task.get(True,timeout=5) print('run task download %s...' % image_url) time.sleep(1) result.put('%s--->success'%image_url) #结束: print('worker exit.')
任務進程要透過網路連接到服務進程,所以要指定服務進程的IP。
運行結果如下:
取得圖片位址,將位址傳送到2.py。
接收1.py傳遞的位址,進行圖片的下載,控制台顯示爬取結果。
三、總結
# 本文基於Python基礎,Python的分散式進程介面簡單,封裝良好,適合需要把繁重任務分佈到多台機器的環境。透過講解Queue的作用是用來傳遞任務和接收結果。
以上是一篇文章帶你了解Python的分散式進程接口的詳細內容。更多資訊請關注PHP中文網其他相關文章!