作為一個SQL玩家,接觸到ElasticSearch 以後,被其dsl奇奇怪怪的寫法所困擾,比如bool should filter 什麼場景下應該嵌套,什麼時候bool query是必須的,什麼時候可以幹掉。排查問題時,不可避免地需要手寫dsl,經常收到ES報錯。
為了解決這個問題,我嘗試讓ChatGPT幫我翻譯,效果還不錯。下面我們就按照場景來看。
場景一: 清單模糊查詢
在B端後台系統的清單頁裡,我們通常可以看到很多篩選框。產品經理經常把按 ID 和 Name 模糊匹配的功能放到一個篩選框,名曰「更好的使用者體驗」。如果用SQL寫的話,非常簡單:
select * from user where client_id = 123 anduser_id like '%张三%' or user_name like '%张三%';
如果儲存在MySQL,加上client_id索引就可以大幅減少篩選出的資料量,效能不會太差。
如果資料量非常大,那就用ES吧。我們可以對ChatGPT這樣提問:
提問開始:
ES index 名字"user",有三個欄位
- #user_id string
- user_name string
- client_id int
#我要查詢帶有以下條件的記錄:client_id = 123 and (user_name = '張三' or user_id = '張三')。 dsl該怎麼寫?
回覆開始:
要查詢"user" 索引中符合下列條件的記錄:client_id = 123 and (user_name = '張三' or user_id = '張三'),可以使用bool 查詢結合term 查詢來實現。以下是對應的 DSL 查詢範例:
GET /user/_search{"query": {"bool": {"filter": [{"term": {"client_id": 123}},{"bool": {"should": [{"term": {"user_name": "张三"}},{"term": {"user_id": "张三"}}]}}]}}}
在這個查詢中,我們使用了 bool 查詢來確保指定的條件被用於過濾文件。
在 filter 子句中,我們有兩個條件:一個是針對 "client_id" 欄位的值為 123 的條件,使用了 term 查詢。第二個條件是巢狀的 bool 查詢,其中包含一個 should 子句。 should 子句中包含了兩個 term 查詢:一個是針對 "user_name" 字段,另一個是針對 "user_id" 字段,它們都檢查值是否為 "張三"。透過使用 should 子句,我們表示其中任一條件匹配即可。
這個 DSL 查詢將傳回滿足 client_id 為 123,且使用者名稱為 "張三" 或使用者ID為 "張三" 的文件記錄。
回覆結束:
ChatGPT 不只給了答案,也給了解釋,我們針對業務裡的index做修改就好。
場景二: 根據聚合結果進行過濾having
基於上面的user 表,我們再加一個ticket_id 字段,表示處理過的工單,我們要查出處理工單超過100個的用戶。 SQL可以這樣寫:
select user_id, max(user_name) as user_name,count(ticket_id) as ticket_cnt from user where client_id = 123having count(ticket_id) > 100;
向ChatGPT提問:
提問開始:
ES index 名字"user",包含以下欄位:
- user_id string
- user_name string
- #client_id int
- ticket_id
#依照user_id 聚合,查詢count(ticket_id) > 100 的user_id,以及user_id對應的user_name
回覆開始:
要依照"user_id" 欄位進行聚合,並查詢符合條件count(ticket_id) > 100 的"user_id",以及對應的" user_name",可以使用聚合查詢中的terms 聚合和bucket_selector 管道聚合來實現。以下是對應的 DSL 查詢範例:
GET /user/_search{"size": 0,"aggs": {"users": {"terms": {"field": "user_id","size": 10,"min_doc_count": 101// 设置最小文档数,只返回 count(ticket_id) > 100 的聚合结果},"aggs": {"user_name": {"terms": {"field": "user_name","size": 1}},"ticket_count": {"value_count": {"field": "ticket_id"}},"bucket_filter": {"bucket_selector": {"buckets_path": {"count": "ticket_count"},"script": "params.count > 100"// 仅保留 count(ticket_id) > 100 的聚合桶}}}}}}
在这个查询中,我们使用了 terms 聚合对 "user_id" 字段进行分组,并在聚合结果中嵌套了 user_name 字段的 terms 聚合和 ticket_id 字段的 value_count 聚合。
在 terms 聚合中,我们设置了 min_doc_count 参数为 101,以仅返回满足 count(ticket_id) > 100 的聚合桶。这样可以过滤掉不满足条件的聚合结果。
最终,我们使用 bucket_selector 管道聚合来进行桶过滤,仅保留满足条件 params.count > 100 的聚合桶。这样,最终的聚合结果中将只包含满足条件的 "user_id" 和对应的 "user_name"。
请注意,根据您的具体需求,您可能需要根据实际情况调整聚合查询中的参数和设置,如设置合适的 size 值来控制返回的聚合桶数量等。
回复结束。
场景三: 聚合以后取topK
向ChatGPT提问:
提问开始:
ES index 名字 "user",包含以下字段:
- user_id string
- user_name string
- client_id int
- ticket_id
我要查询处理ticket数量top10 的 user_id 以及对应的user_name
回复开始:
要查询处理 ticket 数量排名前 10 的 "user_id",以及对应的 "user_name",可以使用 terms 聚合和 top_hits 子聚合来实现。以下是相应的 DSL 查询示例:
GET /user/_search{"size": 0,"aggs": {"top_users": {"terms": {"field": "user_id","size": 10,"order": {"ticket_count": "desc"}},"aggs": {"user_name": {"terms": {"field": "user_name","size": 1}},"ticket_count": {"value_count": {"field": "ticket_id"}},"top_user_hits": {"top_hits": {"size": 1}}}}}}
在这个查询中,我们使用了 terms 聚合对 "user_id" 字段进行分组,并按照 "ticket_count" 字段的降序对分组结果进行排序。
在 terms 聚合中,我们设置了 size 参数为 10,以仅返回前 10 个处理 ticket 数量最多的 "user_id"。
在每个聚合桶中,我们还嵌套了 user_name 字段的 terms 聚合和 ticket_id 字段的 value_count 聚合,分别用于获取对应的 "user_name" 和计算 ticket 数量。
此外,我们使用了 top_hits 子聚合来获取每个聚合桶中的匹配文档的详细信息。在这里,我们设置了 size 参数为 1,以仅获取每个聚合桶中的一条文档信息。
最终,聚合查询的结果将包含处理 ticket 数量排名前 10 的 "user_id",对应的 "user_name",以及每个用户最新的一条文档信息。
请注意,根据实际情况,您可能需要根据具体需求调整聚合查询中的参数和设置,如设置合适的 size 值来控制返回的聚合桶数量,以及添加其他的聚合或过滤条件等。
回复结束。
本着快速出活/快速解决问题的心态,ChatGPT确实提升了工作效率。不过在解决需求之后,还是要补补课,了解下ElasticSearch的用法和工作机制。因为ChatGPT是语言模型,一旦逻辑复杂起来,ChatGPT就开始瞎说了。
以上是使用ChatGPT快速上手ElasticSearch dsl的詳細內容。更多資訊請關注PHP中文網其他相關文章!

軟AI(被定義為AI系統,旨在使用近似推理,模式識別和靈活的決策執行特定的狹窄任務 - 試圖通過擁抱歧義來模仿類似人類的思維。 但是這對業務意味著什麼

答案很明確 - 只是雲計算需要向雲本地安全工具轉變,AI需要專門為AI獨特需求而設計的新型安全解決方案。 雲計算和安全課程的興起 在

企業家,並使用AI和Generative AI來改善其業務。同時,重要的是要記住生成的AI,就像所有技術一樣,都是一個放大器 - 使得偉大和平庸,更糟。嚴格的2024研究O

解鎖嵌入模型的力量:深入研究安德魯·NG的新課程 想像一個未來,機器可以完全準確地理解和回答您的問題。 這不是科幻小說;多虧了AI的進步,它已成為R

大型語言模型(LLM)和不可避免的幻覺問題 您可能使用了諸如Chatgpt,Claude和Gemini之類的AI模型。 這些都是大型語言模型(LLM)的示例,在大規模文本數據集上訓練的功能強大的AI系統

最近的研究表明,根據行業和搜索類型,AI概述可能導致有機交通下降15-64%。這種根本性的變化導致營銷人員重新考慮其在數字可見性方面的整個策略。 新的

埃隆大學(Elon University)想像的數字未來中心的最新報告對近300名全球技術專家進行了調查。由此產生的報告“ 2035年成為人類”,得出的結論是,大多數人擔心AI系統加深的採用


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載
最受歡迎的的開源編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

WebStorm Mac版
好用的JavaScript開發工具