Python中的分層抽樣技巧
抽樣是統計學中常用的一種資料收集方法,它可以從資料集中選擇一部分樣本進行分析,以此推斷整個資料集的特徵。在大數據時代,數據量龐大,使用全樣本進行分析既耗費時間又不夠經濟實際。因此,選擇合適的抽樣方法可以提高資料分析效率。本文主要介紹Python中的分層抽樣技巧。
什麼是分層抽樣?
在抽樣中,分層抽樣(stratified sampling)是常用的技術。與簡單隨機抽樣(simple random sampling)不同,分層抽樣是在總體內將資料分割形成若干層,每一層都具有相同的屬性特徵。然後,從每一層中依照不同的機率進行抽樣來取得樣本。此方法適用於總體上有特殊的特徵存在,尤其在這些特徵較為明顯時,分層抽樣是一種比較有效的統計抽樣方法。
為什麼要進行分層抽樣?
分層抽樣的優點在於可以提高抽樣精度和減少抽樣誤差,以此建立更好的模型和推理。在資料分析的實際場景中,總體中存在著不同種類的變量,這些變量的不適當處理,會引發偏差或誤差,使得建立的模型無法接近真實情況。使用分層抽樣技術,可以控制採集的樣本,使得不同的變數組成的樣本更準確地反映總體的真實情況。
如何進行Python分層抽樣?
在Python中,有多種套件可以實現分層抽樣,其中比較著名的是numpy和pandas函式庫。這兩個函式庫都提供了許多有用的函數,可以幫助我們實現分層抽樣技巧。
下面我們透過一個範例來示範如何使用Python實作分層抽樣。
在這個範例中,我們假設有一個實驗資料集,其中有5個變量,包含性別、年齡、身高、體重和是否抽煙。這個資料集非常適合分層抽樣技巧。
首先,我們需要將資料集分成不同的層。我們選取性別為分層變量,將男性和女性分成兩層。
import pandas as pd # 生成测试数据 data = pd.DataFrame({ 'sex': ['M', 'M', 'M', 'F', 'F', 'F'], 'age': [18, 20, 22, 25, 27, 30], 'height': [170, 172, 175, 160, 165, 170], 'weight': [65, 70, 75, 55, 60, 65], 'smoke': [1, 1, 0, 0, 1, 0] }) # 分层抽样 male = data[data['sex'] == 'M'] female = data[data['sex'] == 'F']
接著,我們需要確定每個層級的樣本大小,以及對應的抽樣比例。在這個範例中,我們假設女性中抽樣10%的樣本,男性則抽樣20%的樣本。
# 分层抽样比例 sampling_prop = { 'M': 0.2, 'F': 0.1 } # 计算每个层级的样本大小 m_size = int(len(male) * sampling_prop['M']) f_size = int(len(female) * sampling_prop['F'])
最後,我們可以使用numpy庫中的random.choice函數,從每個層級抽取樣本。在本例中,我們從每個層級中抽取所需層級的樣本:
import numpy as np # 分层抽样 msample = male.sample(m_size) fsample = female.sample(f_size) # 整合分层样本 sample = pd.concat([msample, fsample])
分層抽樣的結果會相對更準確,與全樣本建立的模型也更容易被廣泛應用。在實務中,應用分層抽樣技術可以提高資料研究的效率和精確度,從而得到更準確的結論。
以上是Python中的分層抽樣技巧的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Linux新版
SublimeText3 Linux最新版

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

Atom編輯器mac版下載
最受歡迎的的開源編輯器