Python中的主成分分析實例
主成分分析(Principal Component Analysis,PCA)是一種常用於資料降維的方法,可以將高維度資料降維至低維度,保留盡可能多的數據變異資訊。 Python提供了許多實作PCA的函式庫和工具,本文就透過一個實例來介紹如何使用Python中的sklearn函式庫實作PCA。
首先,我們需要準備一個資料集。本文將使用Iris資料集,該資料集包含150個樣本數據,每個樣本都有4個特徵值(花萼的長度和寬度、花瓣的長度和寬度),以及一個標籤(鳶尾花的類型)。我們的目標是將這4個特徵進行降維,找到最重要的主成分。
首先,我們需要導入必要的函式庫和資料集。
from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt iris = load_iris() X = iris.data y = iris.target
現在我們可以建立一個PCA物件並應用它。
pca = PCA(n_components=2) X_pca = pca.fit_transform(X)
這裡的PCA物件設定n_components=2,表示我們只想在二維平面上展示我們處理後的資料。我們將fit_transform應用於原始資料X,取得處理後的資料集X_pca。
現在我們可以繪製結果圖。
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.show()
在這個圖中,我們可以看到Iris資料集在降維後的二維空間中的分佈。每個點都表示一個鳶尾花的樣本,顏色表示鳶尾花的類型。
現在讓我們來看看主成分應該是什麼。
print(pca.components_)
這會輸出兩個向量,分別稱為「成分1」和「成分2」。
[[ 0.36158968 -0.08226889 0.85657211 0.35884393]
[-0.65653988 -0.72971237 0.1757674 0.1757674 0.07]。換句話說,我們可以將主成分看作是用於線性組合原始特徵的向量。結果中的每個向量都是單位向量。
我們也可以查看每個成分解釋的資料變異量。
print(pca.explained_variance_ratio_)
這個輸出會顯示每個成分解釋的資料變異量的比例。
[0.92461621 0.05301557]
我們可以看到,這兩個成分總共解釋了資料中94%的變異量。這意味著我們可以非常準確地捕捉數據的特徵。
有一件事要注意,PCA會將所有特徵從原始資料中刪除。因此,如果我們需要保留某些特徵,我們需要在應用PCA之前手動刪除它們。
這就是如何使用Python中的sklearn函式庫實作PCA的實例。 PCA可應用於所有類型的數據,幫助我們從高維度數據中發現最重要的成分。如果您可以理解本文中的程式碼,你也就會有能力在您自己的資料集上應用PCA了。
以上是Python中的主成分分析實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

Dreamweaver CS6
視覺化網頁開發工具