FP-Growth演算法是一種經典的頻繁模式挖掘演算法,它是一種非常高效的演算法,用於從資料集中挖掘經常出現在一起的物品集合。這篇文章將為你詳細介紹FP-Growth演算法的原理和實作方法。
一、FP-Growth演算法基本原理
FP-Growth演算法的基本思想是建立一棵FP-Tree(頻繁項集樹)來表示資料集中的頻繁項集,並從FP-Tree中挖掘頻繁項集。 FP-Tree是一個高效率的資料結構,它可以在不產生候選頻繁項集的情況下,進行頻繁項集的挖掘。
FP-Tree包含兩個部分:根節點和樹節點。根節點沒有值,而樹節點包含一個項目的名稱和項目出現的次數。 FP-Tree還包括指向相同節點的鏈接,這些鏈接稱為“鏈接指針”。
FP-Growth演算法的流程包括建構FP-Tree和挖掘頻繁項集兩個部分:
對於每個事務,刪除非頻繁項,並依照頻繁項的支持度大小排序,得到一個頻繁項集。
遍歷每個事務,對於每個事務的頻繁項集,按照出現的順序插入到FP-Tree中,如果節點已存在,則增加其計數,如果不存在,則插入新的節點。
dataset = [['v', 'a', 'p', 'e', 's'], ['b', 'a', 'k', 'e'], ['a', 'p', 'p', 'l', 'e', 's'], ['d', 'i', 'n', 'n', 'e', 'r']]然後,編寫一個函數來產生有序項集,例如:
def create_ordered_items(dataset): # 遍历数据集,统计每个项出现的次数 item_dict = {} for trans in dataset: for item in trans: if item not in item_dict: item_dict[item] = 1 else: item_dict[item] += 1 # 生成有序项集 ordered_items = [v[0] for v in sorted(item_dict.items(), key=lambda x: x[1], reverse=True)] return ordered_items其中,create_ordered_items函數用於按照項的出現次數取得有序項集。 接下來,寫一個函數來建立FP-Tree:
class TreeNode: def __init__(self, name, count, parent): self.name = name self.count = count self.parent = parent self.children = {} self.node_link = None def increase_count(self, count): self.count += count def create_tree(dataset, min_support): # 生成有序项集 ordered_items = create_ordered_items(dataset) # 建立根节点 root_node = TreeNode('Null Set', 0, None) # 建立FP-Tree head_table = {} for trans in dataset: # 过滤非频繁项 filtered_items = [item for item in trans if item in ordered_items] # 对每个事务中的项集按频繁项的支持度从大到小排序 filtered_items.sort(key=lambda x: ordered_items.index(x)) # 插入到FP-Tree中 insert_tree(filtered_items, root_node, head_table) return root_node, head_table def insert_tree(items, node, head_table): if items[0] in node.children: # 如果节点已存在,则增加其计数 node.children[items[0]].increase_count(1) else: # 如果节点不存在,则插入新的节点 new_node = TreeNode(items[0], 1, node) node.children[items[0]] = new_node # 更新链表中的指针 if head_table.get(items[0], None) is None: head_table[items[0]] = new_node else: current_node = head_table[items[0]] while current_node.node_link is not None: current_node = current_node.node_link current_node.node_link = new_node if len(items) > 1: # 对剩余的项进行插入 insert_tree(items[1:], node.children[items[0]], head_table)create_tree函數用來建立FP-Tree。 最後,寫一個函式來挖掘頻繁項集:
def find_freq_items(head_table, prefix, freq_items, min_support): # 对头指针表中的每个项按照出现的次数从小到大排序 sorted_items = [v[0] for v in sorted(head_table.items(), key=lambda x: x[1].count)] for item in sorted_items: # 将前缀加上该项,得到新的频繁项 freq_set = prefix + [item] freq_count = head_table[item].count freq_items.append((freq_set, freq_count)) # 构建该项的条件模式库 cond_pat_base = get_cond_pat_base(head_table[item]) # 递归地构建新的FP-Tree,并寻找频繁项集 sub_head_table, sub_freq_items = create_tree(cond_pat_base, min_support) if sub_head_table is not None: find_freq_items(sub_head_table, freq_set, freq_items, min_support) def get_cond_pat_base(tree_node): cond_pat_base = [] while tree_node is not None: trans = [] curr = tree_node.parent while curr.parent is not None: trans.append(curr.name) curr = curr.parent cond_pat_base.append(trans) tree_node = tree_node.node_link return cond_pat_base def mine_fp_tree(dataset, min_support): freq_items = [] # 构建FP-Tree root_node, head_table = create_tree(dataset, min_support) # 挖掘频繁项集 find_freq_items(head_table, [], freq_items, min_support) return freq_itemsmine_fp_tree函式用來挖掘頻繁項集。 三、總結FP-Growth演算法是一種高效的頻繁模式挖掘演算法,透過建構FP-Tree,可以在不產生候選頻繁項集的情況下,進行頻繁項集的挖掘。 Python是一種非常適合實現FP-Growth演算法的程式語言,透過使用Python,我們可以快速實現這個演算法,並在實踐中使用它來挖掘頻繁項集。希望這篇文章可以幫助你更好地理解FP-Growth演算法的原理和實作方法。
以上是Python中的FP-Growth演算法詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!