我們將進一步進行研究工作,以生成式人工智慧技術為基礎,深入探討其應用和產業發展現狀,總結優秀成果並推廣,促進產業高品質發展。 2023 年2 月,中國資訊通信研究院(以下簡稱「中國信通院」)依託人工智慧關鍵技術和應用評測工業和資訊化部重點實驗室AI 工程化推進委員會生成式AI 工作小組,正式啟動了生成式AI 技術和應用案例徵集工作。 5 月31 日下午,杭州通用人工智慧論壇大模型技術應用分論壇現場,首輪生成式AI 技術和應用優秀案例評選結果正式發布,網易智企旗下網易易盾成功入選優秀案例,並獲中國信通院頒發證書。
一、內容風控仍是網路安全重中之重
近年來,隨著網路的快速發展,網路數據呈現井噴式成長。多種表現形式的內容,例如文字、圖像、語音和視頻,已成為人們日常生活和工作中必不可少的一部分。內容形式多元化、內容創作門檻大幅降低為我們的生活帶來了極大的便利和效率,但由此引發的內容風控問題卻日益凸顯,數位內容安全已成為網路安全的重中之重。
二、傳統內容風控面臨新挑戰
數位內容風險管控具有廣泛涉及範圍和類型、精細的粒度、經常遭受對抗以及多樣化的需求和標準等特徵。過去,數位內容的風險控制通常是採用「後置 定制 感知」的方式進行識別和防護。
· 後置是指在有害類型或資料出現後,再針對性的進行解決,時效性上往 往是後置,沒有太明確的風險提前感知與防範能力。
· 定制是指有害資訊類型與範圍廣泛,由於缺乏可靠的通用能力,需要對不同的有害類型進行不斷地模型定制訓練,且每次定制都需從頭構建專業領域能力,時間長、成本高。
· 感知是指對有害訊息的識別往往是針對性感知,只針對目標的有害類型,沒有很好地利用場景內容訊息,即過往內容風控是感知層面識別,而非認知層面推理。
·同時,對於有害類型的定義往往存在許多主觀、邊界、細節上的差異,頻繁 地根據標準的多樣更替適配模型,無法真正做到差異化分級分層精準防護。
因此,如何提前感知與預防可能的安全風險、如何針對新出現的危害類型快速構建安全防護能力、如何全面綜合場景信息進行深入認知推理、如何差異化分級分層精準防護,已經成為數位內容安全重要的挑戰與困難。
三、AIGC 為內容風控帶來新思路
AIGC目前的發展使得提供更通用、前置、快速反應的數位內容風控能力成為可能。 AIGC注入了“世界知識”,從而擁有更廣泛的通用能力、創造能力、數據感知和知識融合能力。具體來說:
· 基於其通用能力,在此基礎之上進一步客製化領域安全能力,內容風控的時間週期與成本將大幅縮減;
· 基於其創造能力,內容風控將提前感知與預防未知風險,將”後置”轉變為”前置”,減少了未知有害類型的隱患;
· 基於其豐富的資訊注入與融合能力,充分利用並整合場景、背景、知識等有害類型以外的綜合訊息,將提升內容風控的場景理解與知識遷移能力,進行更深層認知邏輯推理與綜合防治;
· 基於其提示上下文學習範式以及思維推理過程,內容風控將在不更新模型的基礎上更加便捷的適應不同的標準,差異化分級分層精準防控。
四、網易易盾:生成式 AI 技術賦能內容風控
基於上述思路,網易易盾利用生成式AI 技術,研發了基於AIGC 生成對抗防控、小樣本有害資訊辨識、細粒度自適應辨識、綜合資訊邏輯推理等方案,以最強的矛打造最強的盾。具體如下:
(1)基於AIGC生成對抗防治方案
為了實現安全風險提前感知與預防,基於 AIGC 創造能力,網易易盾研發了基於 AIGC 生成對抗防控方案,將原有的「發現 布控」改進為「發現 生成 布控」。該方案將產生當前模型無法覆蓋或識別效果不佳的有害類型與樣本,並以當前主流的安全風險類型為基礎,進一步透過 AIGC 方法模擬安全風險變化趨勢,實現安全風險提前感知。進一步的布控方法包括結合 AIGC 生成樣本進行聯合訓練迭代防控模型、建構 AIGC 生成對抗庫定點防控等。
(2)基於AIGC小樣本有害資訊辨識方案
為了實現數位風控能力高效快速構建,基於 AIGC 的通用能力進一步的研發專業領域能力,我們研發了基於 AIGC 小樣本有害資訊辨識方案。將原有的從頭開始建構「通用能力 領域能力」方案改善為「AIGC 通用能力 通用能力補償 領域能力」建構的步驟。透過小樣本通用能力補償模組設計,以少量樣本的代價彌補了 AIGC 通用能力在專業場景應用的差距,同時直接連結到領域能力建構模組。使用「AIGC通用能力 通用能力補償」的方法,比起從頭開始建立通用能力,更快速、更有效率、成本更低。
(3)基於 AIGC 細粒度自適應識別方案
為了實現差異化分級分層精準防控,基於AIGC 提示上下文學習範式以及思維推理能力,我們研發了基於AIGC 細粒度自適應識別方案,將AIGC 的提示學習的思想應用到有害內容理解解決方案中,並且透過探索將多模態提示與推理輸入與不同標準對齊,使得透過不同的提示與推理輸入來繪製不同的標準。例如性感這個類型,以往很難再做更細粒度的拆解,或者拆解成本很高,現在可以更細粒度的拆解為比如沙灘場景的性感與夜店場景的性感,從而將類型標準細化為場景與樣本,較好的適應不同主觀、不同邊界的標準,更細緻地達到分級分層精準防控。
(4)基於 AIGC 綜合資訊邏輯推理解決方案
為了實現認知邏輯推理與綜合防控,基於 AIGC 的資訊注入與融合以及邏輯推理能力,我們研發了基於 AIGC 綜合資訊邏輯推理解決方案。改進原有的只針對有害資訊的感知識別,使其能夠綜合包括有害資訊在內的全部資訊進行認知推理。 AIGC的視覺語言模型被用於獲取除有害資訊以外的綜合訊息,並用於綜合推理。將原有的基於「領域能力的有害資訊擷取 決策」的方案改進為基於「領域能力有害資訊擷取 基於 AIGC 的通用知識擷取 基於視覺語言模型的資訊融合與綜合邏輯決策」的方案。
五、生成式 AI 為內容風控帶來顯著效益
在數位內容風控場景,網易易盾研發並融合生成式AI 能力,實現領域安全能力高效快速建構、安全風險提前感知與預防、認知推理與綜合防控、差異化分級分層精準防控。相關解決方案的推出,幫助易盾從能力、數據、資訊三個層面全面耦合了AIGC 能力,並在客戶實際應用的數位內容風控場景下,取得效果、成本、時效性、多樣性、適應性、穩定性等方面的顯著效益。
以上是權威榜單 | 網易易盾入選中國信通院生成式 AI 技術與應用優秀案例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

模型上下文協議(MCP):AI和數據的通用連接器,我們都熟悉AI在日常編碼中的作用。 REPLIT,GitHub副詞,黑匣子AI和光標IDE只是AI如何簡化我們的工作流程的幾個示例。 但是想像一下

Microsoft的OmniparSer V2和Omnitool:用AI Imagion AI徹底改變了GUI自動化,不僅可以理解,而且還與您的Windows 11界面互動,例如經驗豐富的專業人員。 Microsoft的OmniparSer V2和Omnitool使它成為RE

革命性應用程序開發:深入研究厭倦了使用複雜開發環境和晦澀的配置文件搏鬥的代理人? Replit Agent旨在簡化將想法轉換為功能應用程序的過程。 這個AI-P

Vibe編碼通過讓我們使用自然語言而不是無盡的代碼行創建應用程序來重塑軟件開發的世界。受Andrej Karpathy等有遠見的人的啟發,這種創新的方法使Dev

這篇博客文章分享了我測試跑道ML的新ACT ONE動畫工具的經驗,涵蓋其Web界面和Python API。雖然有希望,但我的結果比預期的不那麼令人印象深刻。 想探索生成的AI嗎? 在P中學習使用LLM

Yolo(您只看一次)一直是領先的實時對象檢測框架,每次迭代都在以前的版本上改善。最新版本Yolo V12引入了進步,可顯著提高準確性

2025年2月,Generative AI又是一個改變遊戲規則的月份,為我們帶來了一些最令人期待的模型升級和開創性的新功能。從Xai的Grok 3和Anthropic的Claude 3.7十四行詩到Openai的G

這項耗資5000億美元的星際之門AI項目由OpenAI,Softbank,Oracle和Nvidia等科技巨頭支持,並得到美國政府的支持,旨在鞏固美國AI的領導力。 這項雄心勃勃


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),