搜尋
首頁科技週邊人工智慧用好這八條ChatGPT指令,有效率地完成Pandas任務

我们都听说过ChatGPT。它不仅受到科技行业的关注,而且在更多广泛的媒体上成为头条新闻。

尽管有一些关于它在较简单任务上的性能和可靠性的批评,但ChatGPT相比较于其他大型语言模型(LLM)在各种任务中表现都很出色,已经成为生产力的重要推动力。

应用ChatGPT进行Pandas数据的清洗和分析,可以显著提高工作效率。这篇文章介绍了8个提示示例,教你如何通过询问ChatGPT来完成Pandas任务。

第一个提示:定义其角色

首先的提示要确定其作用:

提示:你是一名教我使用Pandas库的Python导师。我期待你向我解释如何使用Pandas来执行特定任务。同时,请在你的解释中给我展示代码。

在开始提问之前,我给出了DataFrame的结构,包括列名和数据类型。

第二个提示

提示:让我先告诉你我所拥有的DataFrame的情况。然后,我将开始提问。以下是以Python字典形式给出的列名和数据类型。键表示列名,值表示数据类型。

{‘store’: dtype(‘O’), ‘product_group’: dtype(‘O’), ‘product_code’: dtype(‘int64’), ‘stock_qty’: dtype(‘int64’), ‘cost’: dtype(‘float64’), ‘price’: dtype(‘float64’), ‘last_week_sales’: dtype(‘int64’), ‘last_month_sales’: dtype(‘int64’)}

这里使用一个由模拟数据准备的样本数据集。你可以从数据集库repo中下载它(https://github.com/SonerYldrm/datasets)。The file is named sales_data_with_stores.csv.。

以下是为你提供的DataFrame,供你参考:

用好這八條ChatGPT指令,有效率地完成Pandas任務

DataFrame的前5行

现在我们可以开始进行Pandas任务了。

示例 1

提示:告诉我如何计算每个商店上周销售额的平均值。

虽然这只是一行简单的代码,但对于刚开始学习Pandas的人来说,可能还需要一些时间来理解。以下是ChatGPT给出的答案:

用好這八條ChatGPT指令,有效率地完成Pandas任務

ChatGPT给出的测试代码片段,复制粘贴如下所示。

# 导入pandasimport pandas as pd# 假设'df'是你的DataFrameaverage_sales = df.groupby('store')['last_week_sales'].mean()

ChatGPT还提供了有关代码的执行方式和输出类型的详细解释以及代码。

示例 2

提示:告诉我如何找到每个商店上个月的总利润。

对于这个任务,ChatGPT需要先弄清楚如何计算利润。让我们看看它的响应:

用好這八條ChatGPT指令,有效率地完成Pandas任務

# 计算每个产品的利润df['last_month_profit'] = (df['price'] - df['cost']) * df['last_month_sales']# 计算每个商店的总利润total_profit = df.groupby('store')['last_month_profit'].sum()

示例 3

在处理真实世界的数据时,我们经常会遇到缺失值的挑战。测试ChatGPT如何处理不太直接的任务。

提示:库存数量列中有一些缺失值。我想用该商店的平均库存数量替换缺失值。告诉我如何完成这个任务。

用好這八條ChatGPT指令,有效率地完成Pandas任務

# 计算每个商店的平均库存数量average_stock_qty_per_store = df.groupby('store')['stock_qty'].transform('mean')# 用该商店的平均库存数量替换'stock_qty'中的缺失值df['stock_qty'].fillna(average_stock_qty_per_store, inplace=True)

有多种方法可以解决这个任务,使用transform函数是其中一种较为有效的方式。

transform函数很重要,使用transform函数来完成此任务的理由如下:

transform函数与apply函数类似,但与apply函数不同,transform函数可以返回与输入大小相同的Series,这使得它在执行矢量化操作和广播时非常有用,特别是与groupby对象一起使用时。

示例 4

提示:告诉我如何找到每个店铺上个月销量额最高的前三种产品。

用好這八條ChatGPT指令,有效率地完成Pandas任務

# 首先,按'store'和'last_month_sales'对DataFrame进行排序df_sorted = df.sort_values(['store', 'last_month_sales'], ascending=[True, False])# 然后,按'store'分组,并使用apply方法选择每个组的前3行top_3_products = df_sorted.groupby('store').head(3)

它首先对整个DataFrame进行排序。我们也可以在每个组内进行排序。让我们看看ChatGPT是否知道该如何做到这一点。

示例 5

提示:是否有另一种方法可以在不先对DataFrame进行排序的情况下完成此任务?

用好這八條ChatGPT指令,有效率地完成Pandas任務

def top_3_products(group):return group.nlargest(3, 'last_month_sales')top_3_df = df.groupby('store').apply(top_3_products)

更高效的方法可能是首先对整个DataFrame进行排序。此示例只是想观察ChatGPT是否能提供不同的解决方案。

示例 6

提示:我想看到每个商店的上周表现与上月表现进行比较。

这是一个简单的任务,但提示并没有直接告诉ChatGPT如何完成。让我们看看它的表现如何。

用好這八條ChatGPT指令,有效率地完成Pandas任務

# 计算上周和上个月每个店的总销售额total_sales_last_week = df.groupby('store')['last_week_sales'].sum()total_sales_last_month = df.groupby('store')['last_month_sales'].sum()# 创建一个新的DataFrame来存储这些信息performance_df = pd.DataFrame({'LastWeekSales': total_sales_last_week,'LastMonthSales': total_sales_last_month,})# 计算从上个月到上周销售额的变化performance_df['SalesChange'] = performance_df['LastWeekSales'] - (performance_df['LastMonthSales'] / 4)

作为对上周与上月的表现相比较的反应,它找到了上周销售额与上月销售额四分之一之间存在差异,这是非常合理的。

它创建的DataFrame如下所示:

用好這八條ChatGPT指令,有效率地完成Pandas任務

示例 7

提示:创建一个名为critical_stock的新列,如果stock_qty小于500,则取值为1,否则取值为0。

ChatGPT为这个任务给出了3个选项,以下是我更喜欢的两个:

用好這八條ChatGPT指令,有效率地完成Pandas任務

# 第一种选项df['critical_stock'] = df['stock_qty'].apply(lambda x: 1 if x <h2 id="示例">示例 8</h2><blockquote style="margin-top: 5px; margin-bottom: 5px; padding-left: 1em; margin-left: 0px; border-left: 3px solid rgb(238, 238, 238); opacity: 0.6;"><p>提示:以大小、缺失值、数据类型和列统计信息的形式创建一个DataFrame的摘要。</p></blockquote><p>虽然DataFrame的函数和方法总结起来很简单,但ChatGPT在整理它们时做得非常出色,呈现出整洁清晰的排版。</p><p>如下的是ChatGPT生成的代码:</p><pre class="brush:php;toolbar:false"># 导入必要的库import pandas as pd# DataFrame大小print("DataFrame Size:")print(df.shape)print("\n")# 缺失值print("Missing Values:")print(df.isnull().sum())print("\n")# 数据类型print("Data Types:")print(df.dtypes)print("\n")# 列统计信息print("Column Statistics:")print(df.describe(include='all'))

总结

以上示例展示了ChatGPT如何在数据分析中,尤其是在Pandas中,革命性地改变了常见任务的完成方式。我们不仅提高了效率,还对可以在Pandas中完成的复杂操作有了更丰富的理解。

以上是用好這八條ChatGPT指令,有效率地完成Pandas任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
一個提示可以繞過每個主要LLM的保障措施一個提示可以繞過每個主要LLM的保障措施Apr 25, 2025 am 11:16 AM

隱藏者的開創性研究暴露了領先的大語言模型(LLM)的關鍵脆弱性。 他們的發現揭示了一種普遍的旁路技術,稱為“政策木偶”,能夠規避幾乎所有主要LLMS

5個錯誤,大多數企業今年將犯有可持續性5個錯誤,大多數企業今年將犯有可持續性Apr 25, 2025 am 11:15 AM

對環境責任和減少廢物的推動正在從根本上改變企業的運作方式。 這種轉變會影響產品開發,製造過程,客戶關係,合作夥伴選擇以及採用新的

H20芯片禁令震撼中國人工智能公司,但長期以來一直在為影響H20芯片禁令震撼中國人工智能公司,但長期以來一直在為影響Apr 25, 2025 am 11:12 AM

最近對先進AI硬件的限制突出了AI優勢的地緣政治競爭不斷升級,從而揭示了中國對外國半導體技術的依賴。 2024年,中國進口了價值3850億美元的半導體

如果Openai購買Chrome,AI可能會統治瀏覽器戰爭如果Openai購買Chrome,AI可能會統治瀏覽器戰爭Apr 25, 2025 am 11:11 AM

從Google的Chrome剝奪了潛在的剝離,引發了科技行業中的激烈辯論。 OpenAI收購領先的瀏覽器,擁有65%的全球市場份額的前景提出了有關TH的未來的重大疑問

AI如何解決零售媒體的痛苦AI如何解決零售媒體的痛苦Apr 25, 2025 am 11:10 AM

儘管總體廣告增長超過了零售媒體的增長,但仍在放緩。 這個成熟階段提出了挑戰,包括生態系統破碎,成本上升,測量問題和整合複雜性。 但是,人工智能

'AI是我們,比我們更多''AI是我們,比我們更多'Apr 25, 2025 am 11:09 AM

在一系列閃爍和惰性屏幕中,一個古老的無線電裂縫帶有靜態的裂紋。這堆易於破壞穩定的電子產品構成了“電子廢物之地”的核心,這是沉浸式展覽中的六個裝置之一,&qu&qu

Google Cloud在下一個2025年對基礎架構變得更加認真Google Cloud在下一個2025年對基礎架構變得更加認真Apr 25, 2025 am 11:08 AM

Google Cloud的下一個2025:關注基礎架構,連通性和AI Google Cloud的下一個2025會議展示了許多進步,太多了,無法在此處詳細介紹。 有關特定公告的深入分析,請參閱我的文章

IR的秘密支持者透露,Arcana的550萬美元的AI電影管道說話,Arcana的AI Meme,Ai Meme的550萬美元。IR的秘密支持者透露,Arcana的550萬美元的AI電影管道說話,Arcana的AI Meme,Ai Meme的550萬美元。Apr 25, 2025 am 11:07 AM

本週在AI和XR中:一波AI驅動的創造力正在通過從音樂發電到電影製作的媒體和娛樂中席捲。 讓我們潛入頭條新聞。 AI生成的內容的增長影響:技術顧問Shelly Palme

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具