搜尋
首頁後端開發Python教學如何在Python中使用卡方檢定進行統計分析?

如何在Python中使用卡方檢定進行統計分析?

Jun 03, 2023 pm 11:40 PM
python統計分析卡方檢定

作为一种重要的统计方法,卡方检验(Chi-Square Test)是常用的用于分类变量间关系的检验方法之一。在Python中,SciPy库提供了chisquare函数用于进行卡方检验。本文将介绍卡方检验的原理、使用方法及实现例子,帮助读者更好地理解和应用卡方检验。

一、卡方检验的原理

卡方检验的核心思想是比较实际观测值和理论值的差异,若两者差异显著,则说明两变量之间存在关系。卡方检验对不同维度数据的分析不同,本文主要介绍二维卡方检验的原理。

在二维表的情况下,卡方检验先假设两变量之间不存在关系,根据假设计算期望值E,再根据实际观测值O和期望值E计算出卡方值,最后通过查表或计算进行显著性检验,判断假设是否成立。

具体计算公式如下:

卡方值 χ²=(O-E)²/E

其中,O为实际观测值,E为期望值。

若卡方值越大,则两变量间的关系越显著,假设被拒绝;反之,若卡方值越小,则关系越不显著,假设被接受。

二、卡方检验的使用

  1. 数据准备

在进行卡方检验之前,需要准备好数据。一般来说,数据以二维表形式存在,既包括实际观测值O,也要包括期望值E,如下所示:

     类别A          类别B

变量1 70 30
变量2 40 60

其中,70表示变量1和类别A的交叉点数。

  1. 根据数据计算卡方值

使用Python中的SciPy库可以方便地计算卡方值和对应的p值。代码如下:

from scipy.stats import chisquare
import numpy as np

obs = np.array([[70, 30], [40, 60]])  #实际观测值
exp = np.array([[50, 50], [50, 50]])  #期望值

stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel())
print(stat, pval)

其中,chisquare函数用于计算卡方值和对应的p值,obs和exp分别表示实际观测值和期望值,ravel()函数将二维数组转换为一维数组,f_exp参数指定期望值,设置为None时使用obs.sum()/4作为期望值。

  1. 检验假设

在得到卡方值和p值后,需要判断假设是否成立。一般设置显著性水平α为0.05,若p值小于等于α,则拒绝原假设,说明两变量存在关系;反之则接受原假设,说明不存在关系。

代码如下:

alpha = 0.05

if pval <= alpha:
    print("Reject null hypothesis, variables are related.")
else:
    print("Accept null hypothesis, variables are independent.")

三、实现例子

下面以一个简单的例子来演示卡方检验的使用。假设对一个电商网站进行了A/B测试,测试用户登录后对网站的浏览时长有无影响,数据如下:

     浏览时长<10s      浏览时长>=10s

登录A 1000 2000
登录B 1500 2500

首先需要计算期望值E,根据数据计算得到期望值如下:

     浏览时长<10s      浏览时长>=10s

登录A 1200 1800
登录B 1300 1900

使用Python代码进行计算和假设检验如下:

obs = np.array([[1000, 2000], [1500, 2500]])  #实际观测值
exp = np.array([[1200, 1800], [1300, 1900]])  #期望值

stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel())
print(stat, pval)

alpha = 0.05

if pval <= alpha:
    print("Reject null hypothesis, variables are related.")
else:
    print("Accept null hypothesis, variables are independent.")

最终结果为:拒绝原假设,说明用户登录方式对浏览时长有影响。

四、小结

卡方检验是一种常用的用于分类变量关系的检验方法,可以判断两变量之间是否存在关系。在Python中,使用SciPy库提供的chisquare函数可以很方便地进行卡方检验。通过本文的介绍,读者可以更好地理解和使用卡方检验,对数据的统计分析更加规范和科学化。

以上是如何在Python中使用卡方檢定進行統計分析?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中