搜尋
首頁後端開發Python教學Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

前言

圖是一種抽象資料結構,本質和樹狀結構是一樣的。

圖與樹比較,圖具有封閉性,可以把樹結構看成是圖結構的前生。如果將兄弟節點或子節點之間的水平連接應用於樹狀結構,則可以建立圖形結構。

樹適合描述從上向下的一對多的資料結構,如公司的組織結構。

圖適合描述更複雜的多對多資料結構,如複雜的群體社交關係。

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

1. 圖理論

借助電腦解決現實世界中的問題時,除了儲存現實世界中的訊息,也需要正確地描述訊息之間的關係。

如在開發地圖程式時,需要在電腦中正確模擬出城市與城市、或城市中各道路之間的關係圖。只有在這個基礎上,才能用演算法計算出從一個城市到另一個城市,或從指定起點到目標點的最佳路徑。

類似的還有航班路線圖、火車線圖、社交交系圖。

圖結構可以有效地反映現實世界中如上所述資訊之間的複雜關係。以此可使用演算法方便的計算出如航班線路中的最短路徑、如火車線路中的最佳中轉方案,如社交圈中誰與誰關係最好、婚姻網中誰與誰最般配……

1.1 圖的概念

頂點:頂點也稱為節點,可認為圖就是頂點組成的集合。頂點本身是有數據意義的,所以頂點都會帶有附加訊息,稱作"有效載荷"。

頂點可以是現實世界中的城市、地名、站名、人……

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

邊: 圖中的邊用來描述頂點之間的關係。邊可以有方向也可以沒有方向,有方向的邊又可分為單向邊和雙向邊。

如下圖(項點1)到(頂點2)之間的邊只有一個方向(箭頭所示為方向),稱為單向邊。類似現實世界中的單向道。

(頂點1)到(頂點2)之間的邊有兩個方向(雙向箭頭),稱為雙向邊。  城市與城市的關係為雙向邊。

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

權重: 邊上可以附加價值資訊,附加的值稱為權重。有權重的邊用來描述一個頂點到另一個頂點的連結強度。

如現實生活中的地鐵路線中,權重可以描述兩個車站之間時間長度、公里數、票價……

邊描述的是頂點之間的關係,權重描述的是連結的差異性。

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

路徑:

#先了解現實世界中路徑概念

如:從一個城市開車到另一個城市,就需要先確定好路徑。也就是 從出發地到目的地要經過那些城市?要走多少里程?

可以說路徑是由邊連接的頂點所組成的序列。因路徑不只一條,所以,從一個項點到另一個項點的路徑描述也不指一種。

在圖結構中如何計算路徑?

  • 沒有權重路徑的長度是路徑上的邊數。

  • 有權重路徑的長度是路徑上的邊的權重總和。

如上圖從(頂點1)到(頂點3)的路徑長度為 8。

環: 從起點出發,最後又回到起點(終點也是起點)就會形成一個環,環是一種特殊的路徑。如上 (V1, V2, V3, V1) 就是一個環。

圖的型別:

綜上所述,圖表可以分為如下幾類:

  • 有向圖: 邊有方向的圖稱為有向圖。

  • 無向圖: 邊沒有方向的圖表稱為無向圖。

  • 加權圖: 邊上面有權重資訊的圖表稱為加權圖。

  • 無環圖: 沒有環的圖形稱為無環圖。

  • 有向無環圖: 沒有環的有向圖,簡稱 DAG。

1.2 定義圖

根據圖的特性,圖資料結構中至少要包含兩類資訊:

所有頂點構成集合訊息,這裡以 V 表示(如地圖程式中,所有城市構在頂點集合)。

所有邊構成集合訊息,這裡用 E 表示(城市與城市之間的關係描述)。

如何描述邊?

邊用來表示項點之間的關係。所以一條邊可以包括 3 個元資料(起點,終點,權重)。當然,權重是可以省略的,但一般研究圖時,都是指的加權圖。

若以 G 表示圖,則 G = (V, E)。每一邊可以用二元組 (fv, ev) 也可以使用 三元組 (fv,ev,w) 描述。

fv 表示起點,ev 表示終點。且 fvev 資料必須引用於 V 集合。

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

如上的圖結構可以描述如下:

# 5 个顶点
V={A0,B1,C2,D3,E4}
# 7 条边
E={ (A0,B1,3),(B1,C2,4),(C2,D3,6),(C2,E4,1),(D3,E4,2),(A0,D3,5),(E4,B1,7)}

1.3 圖的抽象資料結構

圖的抽象資料描述中至少要有的方法:

  • Graph ( ) : 用來建立一個新圖。

  • add_vertex( vert ):在圖中新增一個節點,參數應該是一個節點類型的物件。

  • add_edge(fv,tv ):在 2 個項點之間建立起邊關係。

  • add_edge(fv,tv,w ):在 2 個項點之間建立起一邊並指定連線權重。

  • find_vertex( key ): 根據關鍵字 key 在圖中尋找頂點。

  • find_vertexs( ):查詢所有頂點資訊。

  • find_path( fv,tv):找出.從一個頂點到另一個頂點之間的路徑。

2. 圖的儲存實作

圖的儲存實作主流有 2 種:鄰接矩陣與連結表,本文主要介紹鄰接矩陣。

2.1 鄰接矩陣

使用二維矩陣(陣列)儲存頂點之間的關係。

如 graph[5][5] 可以儲存5 個頂點的關係數據,行號和列號表示頂點,第v 行的第w 列交叉的單元格中的數值表示從頂點v 到頂點w 的邊的權重,如 grap[2][3]=6 表示C2 頂點和D3 頂點的有連接(相鄰),權重為6

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

相鄰矩陣的優點就是簡單,可以清楚表示那些頂點是相連的。由於並非每對頂點之間都存在連接,因此矩陣中存在許多未被利用的空間,通常被稱為「稀疏矩陣」。

只有當每一個頂點和其它頂點都有關係時,矩陣才會填滿。如果圖結構的關係不是太複雜,使用這種結構儲存圖資料會浪費大量的空間。

鄰接矩陣適合表示關係複雜的圖結構,如網路上網頁之間的連結、社交圈中人與人之間的社會關係……

2.2 編碼實現鄰接矩陣

因頂點本身有資料意義,需要先定義頂點型別。

頂點類別:

"""
节(顶)点类
"""
class Vertex:
    def __init__(self, name, v_id=0):
        # 顶点的编号
        self.v_id = v_id
        # 顶点的名称
        self.v_name = name
        # 是否被访问过:False 没有 True:有
        self.visited = False

    # 自我显示
    def __str__(self):
        return '[编号为 {0},名称为 {1} ] 的顶点'.format(self.v_id, self.v_name)

頂點類別中 v_id 和 v_name 很好理解。為什麼要新增一個 visited

這個變數用來記錄頂點在路徑搜尋過程中是否已經被搜尋過,避免重複搜尋計算。

圖類別:圖類別的方法較多,這裡逐方法介紹。

初始化方法

class Graph:
    """
    nums:相邻矩阵的大小
    """

    def __init__(self, nums):
        # 一维列表,保存节点,最多只能有 nums 个节点
        self.vert_list = []
        # 二维列表,存储顶点及顶点间的关系(权重)
        # 初始权重为 0 ,表示节点与节点之间还没有建立起关系
        self.matrix = [[0] * nums for _ in range(nums)]
        # 顶点个数
        self.v_nums = 0
        # 使用队列模拟队列或栈,用于广度、深度优先搜索算法
        self.queue_stack = []
        # 保存搜索到的路径
        self.searchPath = []
        
    # 暂省略……

初始化方法用來初始化圖中的資料類型:

一維列表 vert_list 保存所有頂點數據。

二維列表 matrix 保存頂點與頂點之間的關聯資料。

queue_stack 使用清單模擬佇列或堆疊,用於後續的廣度搜尋和深度搜尋。

怎麼使用清單模擬佇列或堆疊?

清單有 append()pop() 2 個很價值的方法。

append() 用來在清單中新增數據,且每次都是從清單最後面新增。

pop() 預設從清單最後刪除且彈出數據, pop(參數) 可提供索引值用來從指定位置刪除且彈出資料。

使用 append() 和 pop() 方法就能模擬堆疊,從同一個地方進出資料。

使用 append() 和 pop(0) 方法就能模擬佇列,從後面新增數據,從最前面取得資料

##searchPath :用來保存使用廣度或深度優先路徑搜尋中的結果。

新增節(頂)點方法:#

    """
    添加新顶点
    """
    def add_vertex(self, vert):
        if vert in self.vert_list:
            # 已经存在
            return
        if self.v_nums >= len(self.matrix):
            # 超过相邻矩阵所能存储的节点上限
            return
        # 顶点的编号内部生成
        vert.v_id = self.v_nums
        self.vert_list.append(vert)
        # 数量增一
        self.v_nums += 1

上述方法注意一点,节点的编号由图内部逻辑提供,便于节点编号顺序的统一。

添加边方法

此方法是邻接矩阵表示法的核心逻辑。

  '''
    添加节点与节点之间的边,
    如果是无权重图,统一设定为 1 
    '''
    def add_edge(self, from_v, to_v):
        # 如果节点不存在
        if from_v not in self.vert_list:
            self.add_vertex(from_v)
        if to_v not in self.vert_list:
            self.add_vertex(to_v)
        # from_v 节点的编号为行号,to_v 节点的编号为列号
        self.matrix[from_v.v_id][to_v.v_id] = 1

    '''
    添加有权重的边
    '''
    def add_edge(self, from_v, to_v, weight):
        # 如果节点不存在
        if from_v not in self.vert_list:
            self.add_vertex(from_v)
        if to_v not in self.vert_list:
            self.add_vertex(to_v)
        # from_v 节点的编号为行号,to_v 节点的编号为列号
        self.matrix[from_v.v_id][to_v.v_id] = weight

添加边信息的方法有 2 个,一个用来添加无权重边,一个用来添加有权重的边。

查找某节点

使用线性查找法从节点集合中查找某一个节点。

    '''
    根据节点编号返回节点
    '''
    def find_vertex(self, v_id):
        if v_id >= 0 or v_id <= self.v_nums:
            # 节点编号必须存在
            return [tmp_v for tmp_v in self.vert_list if tmp_v.v_id == v_id][0]

查询所有节点

  &#39;&#39;&#39;
    输出所有顶点信息
    &#39;&#39;&#39;
    def find_only_vertexes(self):
        for tmp_v in self.vert_list:
            print(tmp_v)

此方法仅为了查询方便。

查询节点之间的关系

    &#39;&#39;&#39;
    迭代节点与节点之间的关系(边)
    &#39;&#39;&#39;
    def find_vertexes(self):
        for tmp_v in self.vert_list:
            edges = self.matrix[tmp_v.v_id]
            for col in range(len(edges)):
                w = edges[col]
                if w != 0:
                    print(tmp_v, &#39;和&#39;, self.vert_list[col], &#39;的权重为:&#39;, w)

测试代码:

if __name__ == "__main__":
    # 初始化图对象
    g = Graph(5)
    # 添加顶点
    for _ in range(len(g.matrix)):
        v_name = input("顶点的名称( q 为退出):")
        if v_name == &#39;q&#39;:
            break
        v = Vertex(v_name)
        g.add_vertex(v)

    # 节点之间的关系
    infos = [(0, 1, 3), (0, 3, 5), (1, 2, 4), (2, 3, 6), (2, 4, 1), (3, 4, 2), (4, 1, 7)]
    for i in infos:
        v = g.find_vertex(i[0])
        v1 = g.find_vertex(i[1])
        g.add_edge(v, v1, i[2])
    # 输出顶点及边a
    print("-----------顶点与顶点关系--------------")
    g.find_vertexes()
    &#39;&#39;&#39;
    输出结果:
    顶点的名称( q 为退出):A
    顶点的名称( q 为退出):B
    顶点的名称( q 为退出):C
    顶点的名称( q 为退出):D
    顶点的名称( q 为退出):E
    [编号为 0,名称为 A ] 的顶点 和 [编号为 1,名称为 B ] 的顶点 的权重为: 3
[编号为 0,名称为 A ] 的顶点 和 [编号为 3,名称为 D ] 的顶点 的权重为: 5
[编号为 1,名称为 B ] 的顶点 和 [编号为 2,名称为 C ] 的顶点 的权重为: 4
[编号为 2,名称为 C ] 的顶点 和 [编号为 3,名称为 D ] 的顶点 的权重为: 6
[编号为 2,名称为 C ] 的顶点 和 [编号为 4,名称为 E ] 的顶点 的权重为: 1
[编号为 3,名称为 D ] 的顶点 和 [编号为 4,名称为 E ] 的顶点 的权重为: 2
[编号为 4,名称为 E ] 的顶点 和 [编号为 1,名称为 B ] 的顶点 的权重为: 7
    &#39;&#39;&#39;

3. 搜索路径

在图中经常做的操作,就是查找从一个顶点到另一个顶点的路径。如怎么查找到 A0 到 E4 之间的路径长度:

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

从人的直观思维角度查找一下,可以找到如下路径:

  • {A0,B1,C2,E4}路径长度为 8。

  • {A0,D3,E4} 路径长度为 7。

  • {A0,B1,C2,D3,E4} 路径长度为 15。

在路径查找时,人的思维具有知识性和直观性特点,因此不存在所谓的尝试或碰壁问题。而计算机是试探性思维,就会出现这条路不通,再找另一条路的现象。

所以路径算法中常常会以错误为代价,在查找过程中会走一些弯路。常用的路径搜索算法有 2 种:

  • 广度优先搜索

  • 深度优先搜索

3.1 广度优先搜索

先看一下广度优先搜索的示意图:

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

广度优先搜索的基本思路:

  • 确定出发点,本案例是 A0 顶点

  • 以出发点相邻的顶点为候选点,并存储至队列。

  • 从队列中每拿出一个顶点后,再把与此顶点相邻的其它顶点做为候选点存储于队列。

  • 不停重复上述过程,至到找到目标顶点或队列为空。

使用广度搜索到的路径与候选节点进入队列的先后顺序有关系。如第 1 步确定候选节点时 B1 和 D3 谁先进入队列,对于后面的查找也会有影响。

上图使用广度搜索可找到 A0~E4 路径是:

{A0,B1,D3,C2,E4}

其实 {A0,B1,C2,E4} 也是一条有效路径,有可能搜索不出来,这里因为搜索到 B1 后不会马上搜索 C2,因为 B3 先于 C2 进入,广度优先搜索算法只能保证找到路径,而不能保存找到最佳路径。

编码实现广度优先搜索:

广度优先搜索需要借助队列临时存储选节点,本文使用列表模拟队列。

在图类中实现广度优先搜索算法的方法:

class Graph():
    
    # 省略其它代码

    &#39;&#39;&#39;
    广度优先搜索算法
    &#39;&#39;&#39;
    def bfs(self, from_v, to_v):
        # 查找与 fv 相邻的节点
        self.find_neighbor(from_v)
        # 临时路径
        lst_path = [from_v]
        # 重复条件:队列不为空
        while len(self.queue_stack) != 0:
            # 从队列中一个节点(模拟队列)
            tmp_v = self.queue_stack.pop(0)
            # 添加到列表中
            lst_path.append(tmp_v)
            # 是不是目标节点
            if tmp_v.v_id == to_v.v_id:
                self.searchPath.append(lst_path)
                print(&#39;找到一条路径&#39;, [v_.v_id for v_ in lst_path])
                lst_path.pop()
            else:
                self.find_neighbor(tmp_v)
    &#39;&#39;&#39;
    查找某一节点的相邻节点,并添加到队列(栈)中
    &#39;&#39;&#39;
    def find_neighbor(self, find_v):
        if find_v.visited:
            return
        find_v.visited = True
        # 找到保存 find_v 节点相邻节点的列表
        lst = self.matrix[find_v.v_id]
        for idx in range(len(lst)):
            if lst[idx] != 0:
                # 权重不为 0 ,可判断相邻
                self.queue_stack.append(self.vert_list[idx])

广度优先搜索过程中,需要随时获取与当前节点相邻的节点,find_neighbor() 方法的作用就是用来把当前节点的相邻节点压入队列中。

测试广度优先搜索算法:

if __name__ == "__main__":
    # 初始化图对象
    g = Graph(5)
    # 添加顶点
    for _ in range(len(g.matrix)):
        v_name = input("顶点的名称( q 为退出):")
        if v_name == &#39;q&#39;:
            break
        v = Vertex(v_name)
        g.add_vertex(v)

    # 节点之间的关系
    infos = [(0, 1, 3), (0, 3, 5), (1, 2, 4), (2, 3, 6), (2, 4, 1), (3, 4, 2), (4, 1, 7)]
    for i in infos:
        v = g.find_vertex(i[0])
        v1 = g.find_vertex(i[1])
        g.add_edge(v, v1, i[2])

    print("----------- 广度优先路径搜索--------------")
    f_v = g.find_vertex(0)
    t_v = g.find_vertex(4)
    g.bfs(f_v,t_v)
    &#39;&#39;&#39;
    输出结果
    顶点的名称( q 为退出):A
    顶点的名称( q 为退出):B
    顶点的名称( q 为退出):C
    顶点的名称( q 为退出):D
    顶点的名称( q 为退出):E


    ----------- 广度优先路径搜索--------------
    找到一条路径 [0, 1, 3, 2, 4]
    找到一条路径 [0, 1, 3, 2, 3, 4]
    &#39;&#39;&#39;

使用递归实现广度优先搜索算法:

   &#39;&#39;&#39;
    递归方式实现广度搜索
    &#39;&#39;&#39;
    def bfs_dg(self, from_v, to_v):
        self.searchPath.append(from_v)
        if from_v.v_id != to_v.v_id:
            self.find_neighbor(from_v)
        if len(self.queue_stack) != 0:
            self.bfs_dg(self.queue_stack.pop(0), to_v)

3.2 深度优先搜索算法

先看一下深度优先算法的示意图。

Python怎麼實現圖的廣度與深度優先路徑搜尋演算法

深度优先搜索算法和广度优先搜索算法不同的地方在于:深度优先搜索算法将候选节点放在堆栈中。因栈是先进后出,所以,搜索到的节点顺序不一样。

使用循环实现深度优先搜索算法:

深度优先搜索算法需要用到栈,本文使用列表模拟。

    &#39;&#39;&#39;
    深度优先搜索算法
    使用栈存储下一个需要查找的节点
    &#39;&#39;&#39;
    def dfs(self, from_v, to_v):
        # 查找与 from_v 相邻的节点
        self.find_neighbor(from_v)
        # 临时路径
        lst_path = [from_v]
        # 重复条件:栈不为空
        while len(self.queue_stack) != 0:
            # 从栈中取一个节点(模拟栈)
            tmp_v = self.queue_stack.pop()
            # 添加到列表中
            lst_path.append(tmp_v)
            # 是不是目标节点
            if tmp_v.v_id == to_v.v_id:
                self.searchPath.append(lst_path)
                print(&#39;找到一条路径:&#39;, [v_.v_id for v_ in lst_path])
                lst_path.pop()
            else:
                self.find_neighbor(tmp_v)

测试:

if __name__ == "__main__":
    # 初始化图对象
    g = Graph(5)
    # 添加顶点
    for _ in range(len(g.matrix)):
        v_name = input("顶点的名称( q 为退出):")
        if v_name == &#39;q&#39;:
            break
        v = Vertex(v_name)
        g.add_vertex(v)

    # 节点之间的关系
    infos = [(0, 1, 3), (0, 3, 5), (1, 2, 4), (2, 3, 6), (2, 4, 1), (3, 4, 2), (4, 1, 7)]
    for i in infos:
        v = g.find_vertex(i[0])
        v1 = g.find_vertex(i[1])
        g.add_edge(v, v1, i[2])
    # 输出顶点及边a
    print("-----------顶点与顶点关系--------------")
    g.find_vertexes()

    print("----------- 深度优先路径搜索--------------")
    f_v = g.find_vertex(0)
    t_v = g.find_vertex(4)
    g.dfs(f_v, t_v)
    &#39;&#39;&#39;
    输出结果
    顶点的名称( q 为退出):A
    顶点的名称( q 为退出):B
    顶点的名称( q 为退出):C
    顶点的名称( q 为退出):D
    顶点的名称( q 为退出):E
    -----------顶点与顶点关系--------------
[编号为 0,名称为 A ] 的顶点 和 [编号为 1,名称为 B ] 的顶点 的权重为: 3
[编号为 0,名称为 A ] 的顶点 和 [编号为 3,名称为 D ] 的顶点 的权重为: 5
[编号为 1,名称为 B ] 的顶点 和 [编号为 2,名称为 C ] 的顶点 的权重为: 4
[编号为 2,名称为 C ] 的顶点 和 [编号为 3,名称为 D ] 的顶点 的权重为: 6
[编号为 2,名称为 C ] 的顶点 和 [编号为 4,名称为 E ] 的顶点 的权重为: 1
[编号为 3,名称为 D ] 的顶点 和 [编号为 4,名称为 E ] 的顶点 的权重为: 2
[编号为 4,名称为 E ] 的顶点 和 [编号为 1,名称为 B ] 的顶点 的权重为: 7
    ----------- 深度优先路径搜索--------------
    找到一条路径: [0, 3, 4]
    找到一条路径: [0, 3, 1, 2, 4]
    &#39;&#39;&#39;

使用递归实现深度优先搜索算法:

    &#39;&#39;&#39;
    递归实现深度搜索算法
    &#39;&#39;&#39;
    def def_dg(self, from_v, to_v):
        self.searchPath.append(from_v)
        if from_v.v_id != to_v.v_id:
            # 查找与 from_v 节点相连的子节点
            lst = self.find_neighbor_(from_v)
            if lst is not None:
                for tmp_v in lst[::-1]:
                    self.def_dg(tmp_v, to_v)
    """
    查找某一节点的相邻节点,以列表方式返回
    """
    def find_neighbor_(self, find_v):
        if find_v.visited:
            return
        find_v.visited = True
        # 查找与 find_v 节点相邻的节点
        lst = self.matrix[find_v.v_id]
        return [self.vert_list[idx] for idx in range(len(lst)) if lst[idx] != 0]

递归实现时,不需要使用全局栈,只需要获到当前节点的相邻节点便可。

以上是Python怎麼實現圖的廣度與深度優先路徑搜尋演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。