搜尋
首頁科技週邊人工智慧辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

機器之心專欄

機器之心編輯部

# AI 造假的成功率很高,前幾天「10 分鐘騙 430萬」還上了熱搜。在最熱門的大語言模型上,研究人員最近探索了一種識別方法。

隨著生成式大模型的不斷進步,它們所產生的語料正逐步逼近人類。雖然大模型正在解放無數文書的雙手,它以假亂真的強勁能力也為一些不法分子所利用,造成了一系列社會問題:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

來自北大、華為的研究者提出了一種識別各式 AI 生成語料的可靠文字偵測器。根據長短文本的不同特性,提出了一種基於 PU 學習的多尺度 AI 生成文字偵測器訓練方法。透過偵測器訓練流程的改進,在同等條件下能取得在長、短 ChatGPT 語料上偵測能力的可觀提升,解決了目前偵測器對於短文字辨識精度低的痛點。

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

論文網址:

https://arxiv.org/abs/2305.18149

程式碼位址 (MindSpore):

https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt

程式碼位址 (PyTorch):

https://github.com/YuchuanTian/AIGC_text_detector

引言

隨著大語言模型的生成效果越發逼真,各行各業迫切需要一款可靠的 AI 生成文字偵測器。然而,不同行業對檢測語料的要求不同,例如在學術界,普遍需要對大段完整的學術文本進行檢測;在社交平台上,需要對相對簡短而較為支離破碎的假消息進行檢測。然而,既有檢測器往往無法兼顧各式需求。例如,主流的一些 AI 文字偵測器對較短的語料預測能力普遍較差。

對於不同長度語料的不同檢測效果,作者觀察到較短的AI 生成文本可能存在著一部分歸屬上的「不確定性」;或者更直白地說,由於一些AI 生成短句同時也常常被人類使用,因而難以界定AI 產生的短文本是否來自於人或AI。這裡列舉了幾個人和 AI 分別對同一問題做出回答的例子:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

由這些例子可見,很難對 AI 生成的簡短回答進行識別:這類語料與人的區別過小,很難嚴格判斷其真實屬性。因此,將短文本簡單標註為人類 / AI 並按照傳統的二分類問題進行文本檢測是不合適的。

針對這個問題,本研究將人類/ AI 的二分類檢測部分轉化為了一個部分PU(Positive-Unlabeled)學習問題,即在較短的句子中,人的語言為正類(Positive),機器語言為無標記類別(Unlabeled),以此對訓練的損失函數進行了改進。此改進可觀提升了偵測器在各式語料上的分類效果。

演算法細節

在傳統的 PU 學習設定下,一個二分類模型只能根據正訓練樣本和無標記訓練樣本進行學習。一個常用的 PU 學習方法是透過制定 PU loss 來估計負樣本對應的二分類損失:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

其中,表示正樣本與正標籤計算的二分類損失;表示將無標記樣本全部假定為負標籤計算的二分類損失;表示將正樣本假定為負標籤計算的二分類損失;表示的是先驗正樣本機率,即正樣本在全部PU 樣本中的預估佔比。在傳統的 PU 學習中,通常將先驗設定為一個固定的超參數。然而在文字偵測的場景中,偵測器需要處理各式長度不同的文字;而對於不同長度的文字而言,其正樣本在所有和該樣本相同長度的PU 樣本中的預估佔比也是不同的。因此,本研究對 PU Loss 進行了改進,提出了長度敏感的多尺度 PU(MPU)loss 損失函數。

具體地,本研究提出了一個抽象的循環模型對較短文本檢測進行建模。傳統的 NLP 模型在處理序列時,通常是馬可夫鏈的結構,如 RNN、LSTM 等。這類循環模型的這個過程通常可以理解為一個逐漸迭代的過程,即每個 token 輸出的預測,都是由上一個 token 及之前序列的預測結果和該 token 的預測結果經過變換、融合得到的。即以下流程:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

為了根據這個抽象的模型進行先驗機率的估計,需要假定該模型的輸出為某個句子為正類別(Positive)的置信度,即判定為人說出的樣本的機率。假設每個 token 的貢獻大小為句子 token 長度的反比,是非正(Positive)即無標記(Unlabeled)的,且為無標記的機率遠大於為正的機率。因為隨著大模型的詞彙量逐漸逼近人類,絕大部分詞彙會同時出現在 AI 和人類語料中。根據這個簡化後的模型和設定好的正 token 機率,透過求出不同輸入情況下模型輸出置信度的總期望,來得到最終的先驗估計。

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

透過理論推導和實驗,估計得到先驗機率隨著文本長度的上升而上升,最終逐漸穩定。這種現像也符合預期,因為隨著文字變長,偵測器可以捕捉的資訊更多,文本的 「來源不確定性」也逐漸減弱:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

之後,對於每個正樣本,根據其樣本長度得到的獨特先驗對 PU loss 進行計算。最後,由於較短文本僅有部分「不確定性」(即較短文本也會含有一些人或AI 的文本特徵),可以對二分類loss 和MPU loss 進行加權相加,作為最終的最佳化目標:

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

此外要注意的是,MPU loss 適配的是長度較為多樣的訓練語料。倘若既有的訓練資料單質化明顯,大部分語料為大段冗長的文本,則無法全面發揮 MPU 方法的功效。為了使得訓練語料的長度更多樣化,本研究也引入了一個在句子層面進行多尺度化的模組。此模組隨機遮蓋訓練語料中的部分句子,並對餘下句子在保留原有順序的前提下進行重組。經過訓練語料的多尺度化操作,訓練文本得到了長度上的極大豐富,從而充分利用了 PU 學習進行 AI 文字偵測器訓練。

實驗結果

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

如上表所示,作者先在較短的 AI 生成語料資料集 Tweep-Fake 上檢驗 MPU loss 的效果。此資料集中的語料均為推特上較為短小的語段。作者又在傳統的語言模型微調基礎上將傳統二分類 loss 替換為含有 MPU loss 的最佳化目標。改進之後的語言模型偵測器效果較為突出,超過了其它基線演算法。

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

作者又對chatGPT 生成文本進行了檢測,經過傳統微調得到的語言模型檢測器在短句上表現較差;經過MPU 方式在同等條件下訓練得到的檢測器在短句上表現良好,且同時能夠在完整語料上取得可觀的效果提升,F1-score 提升了1%,超越了OpenAI 和DetectGPT 等SOTA 演算法。

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

如上表所示,作者在消融實驗中觀察了每個部分所帶來的效果增益。 MPU loss 加強了長、短語料的分類效果。

辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了

作者也對比了傳統 PU 和 Multiscale PU(MPU)。由上表可見 MPU 效果更勝一籌,能更適配 AI 多尺度文字偵測的任務。

總結

作者提出基於多尺度 PU 學習的方案,解決了文字偵測器對於短句辨識的難題,隨著未來 AIGC 生成模型的氾濫,對於這類內容的偵測將會越來越重要。這項研究在 AI 文字偵測的問題上邁出了堅實的一步,希望未來會有更多類似的研究,把 AIGC 內容進行更好的管控,防止 AI 生成內容的濫用。

以上是辨識ChatGPT造假,效果超越OpenAI:北大、華為的AI生成檢測器來了的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:搜狐。如有侵權,請聯絡admin@php.cn刪除
無法使用chatgpt!解釋可以立即測試的原因和解決方案[最新2025]無法使用chatgpt!解釋可以立即測試的原因和解決方案[最新2025]May 14, 2025 am 05:04 AM

ChatGPT無法訪問?本文提供多種實用解決方案!許多用戶在日常使用ChatGPT時,可能會遇到無法訪問或響應緩慢等問題。本文將根據不同情況,逐步指導您解決這些問題。 ChatGPT無法訪問的原因及初步排查 首先,我們需要確定問題是出在OpenAI服務器端,還是用戶自身網絡或設備問題。 請按照以下步驟進行排查: 步驟1:檢查OpenAI官方狀態 訪問OpenAI Status頁面 (status.openai.com),查看ChatGPT服務是否正常運行。如果顯示紅色或黃色警報,則表示Open

計算ASI的風險始於人類的思想計算ASI的風險始於人類的思想May 14, 2025 am 05:02 AM

2025年5月10日,麻省理工學院物理學家Max Tegmark告訴《衛報》,AI實驗室應在釋放人工超級智能之前模仿Oppenheimer的三位一體測試演算。 “我的評估是'康普頓常數',這是一場比賽的可能性

易於理解的解釋如何編寫和撰寫歌詞和推薦工具易於理解的解釋如何編寫和撰寫歌詞和推薦工具May 14, 2025 am 05:01 AM

AI音樂創作技術日新月異,本文將以ChatGPT等AI模型為例,詳細講解如何利用AI輔助音樂創作,並輔以實際案例進行說明。我們將分別介紹如何通過SunoAI、Hugging Face上的AI jukebox以及Python的Music21庫進行音樂創作。 通過這些技術,每個人都能輕鬆創作原創音樂。但需注意,AI生成內容的版權問題不容忽視,使用時務必謹慎。 讓我們一起探索AI在音樂領域的無限可能! OpenAI最新AI代理“OpenAI Deep Research”介紹: [ChatGPT]Ope

什麼是chatgpt-4?對您可以做什麼,定價以及與GPT-3.5的差異的詳盡解釋!什麼是chatgpt-4?對您可以做什麼,定價以及與GPT-3.5的差異的詳盡解釋!May 14, 2025 am 05:00 AM

ChatGPT-4的出现,极大地拓展了AI应用的可能性。相较于GPT-3.5,ChatGPT-4有了显著提升,它具备强大的语境理解能力,还能识别和生成图像,堪称万能的AI助手。在提高商业效率、辅助创作等诸多领域,它都展现出巨大的潜力。然而,与此同时,我们也必须注意其使用上的注意事项。 本文将详细解读ChatGPT-4的特性,并介绍针对不同场景的有效使用方法。文中包含充分利用最新AI技术的技巧,敬请参考。 OpenAI发布的最新AI代理,“OpenAI Deep Research”详情请点击下方链

解釋如何使用chatgpt應用程序!日本支持和語音對話功能解釋如何使用chatgpt應用程序!日本支持和語音對話功能May 14, 2025 am 04:59 AM

CHATGPT應用程序:與AI助手釋放您的創造力!初學者指南 ChatGpt應用程序是一位創新的AI助手,可處理各種任務,包括寫作,翻譯和答案。它是一種具有無限可能性的工具,可用於創意活動和信息收集。 在本文中,我們將以一種易於理解的方式解釋初學者,從如何安裝chatgpt智能手機應用程序到語音輸入功能和插件等應用程序所獨有的功能,以及在使用該應用時要牢記的要點。我們還將仔細研究插件限制和設備對設備配置同步

如何使用中文版Chatgpt?註冊程序和費用的說明如何使用中文版Chatgpt?註冊程序和費用的說明May 14, 2025 am 04:56 AM

ChatGPT中文版:解鎖中文AI對話新體驗 ChatGPT風靡全球,您知道它也提供中文版本嗎?這款強大的AI工具不僅支持日常對話,還能處理專業內容,並兼容簡體中文和繁體中文。無論是中國地區的使用者,還是正在學習中文的朋友,都能從中受益。 本文將詳細介紹ChatGPT中文版的使用方法,包括賬戶設置、中文提示詞輸入、過濾器的使用、以及不同套餐的選擇,並分析潛在風險及應對策略。此外,我們還將對比ChatGPT中文版和其他中文AI工具,幫助您更好地了解其優勢和應用場景。 OpenAI最新發布的AI智能

5 AI代理神話,您需要停止相信5 AI代理神話,您需要停止相信May 14, 2025 am 04:54 AM

這些可以將其視為生成AI領域的下一個飛躍,這為我們提供了Chatgpt和其他大型語言模型聊天機器人。他們可以代表我們採取行動,而不是簡單地回答問題或產生信息

易於理解使用Chatgpt創建和管理多個帳戶的非法性的解釋易於理解使用Chatgpt創建和管理多個帳戶的非法性的解釋May 14, 2025 am 04:50 AM

使用chatgpt有效的多個帳戶管理技術|關於如何使用商業和私人生活的詳盡解釋! Chatgpt在各種情況下都使用,但是有些人可能擔心管理多個帳戶。本文將詳細解釋如何為ChatGpt創建多個帳戶,使用時該怎麼做以及如何安全有效地操作它。我們還介紹了重要的一點,例如業務和私人使用差異,並遵守OpenAI的使用條款,並提供指南,以幫助您安全地利用多個帳戶。 Openai

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)