首頁 >後端開發 >Python教學 >python基於Node2Vec怎麼實現節點分類及其視覺化

python基於Node2Vec怎麼實現節點分類及其視覺化

PHPz
PHPz轉載
2023-06-01 20:05:101324瀏覽

簡介

Node2vec是一種用於圖嵌入(Graph Embedding)的方法,可用於節點分類、社群發現和連結預測等任務。

實作過程 

載入資料集

首先,讓我們載入所需的Python函式庫並執行以下程式碼以載入Cora資料集:

import networkx as nx 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
%matplotlib inline 
from sklearn.manifold import TSNE 
from node2vec import Node2Vec 
# 加载Cora数据集
cora = pd.read_csv('cora/cora.content', sep='\t', header=None)
cited_in = pd.read_csv('cora/cora.cites', sep='\t', header=None,
                       names=['target', 'source'])
nodes, features = cora.iloc[:, :-1], cora.iloc[:, -1]

其中cora.content 包含了所有節點特徵訊息,總共具有2708個節點和1433個特徵;而cora.cites 透過引文映射分別針對所述每個節點建立一個節點間的有向邊關係,共有5429個邊。接下來,我們需要將節點特徵和引用資訊合併,建構圖結構。

# 定义函数:构造基于Cora数据集的图结构
def create_graph(nodes, features, cited_in):
    nodes.index = nodes.index.map(str)
    graph = nx.from_pandas_edgelist(cited_in,
                                    source='source',
                                    target='target')
    for index, row in nodes.iterrows():
        node_id = str(row[0])
        features = row.drop(labels=[0])
        node_attrs = {f'attr_{i}': float(x) for i, x in enumerate(features)}
        if graph.has_node(node_id) == True:
            temp = graph.nodes[node_id]
            temp.update(node_attrs)
            graph.add_nodes_from([(node_id, temp)])
        else:
            graph.add_nodes_from([(node_id, node_attrs)])
    return graph
# 构建图
graph = create_graph(nodes, features, cited_in)

此函數將 cora.content 中的節點特徵與 cora.cites 的有向邊整合,並在圖上標記它們。現在我們已經建立了一個圖形視圖,可以按想法視覺化。

使用Node2vec嵌入資料

為了進行節點特徵分類,我們需要從網路中提取一些資訊並將其作為輸入傳遞給分類器。一個範例是使用節點2向量方法將提取的資訊轉換為向量表達式,使每個節點至少具有一個維度。

透過隨機遊走樣本從起始節點到目標節點,Node2Vec模型學習代表每個節點的向量。節點2Vec模型定義隨機遊走過程中節點間的轉移機率。

我們將使用 node2vec 函式庫來產生圖形的嵌入表示,並採用神經網路進行節點分類。

# 定义函数:创建基于Cora数据集的嵌入
def create_embeddings(graph):
    # 初始化node2vec实例,指定相关超参数
    n2v = Node2Vec(graph, dimensions=64, walk_length=30,
                   num_walks=200, p=1, q=1, weight_key='attr_weight')
    # 基于指定参数训练得到嵌入向量表达式
    model = n2v.fit(window=10, min_count=1, batch_words=4)
    # 获得所有图中节点的嵌入向量
    embeddings = pd.DataFrame(model.wv.vectors)
    ids = list(map(str, model.wv.index2word))
    # 将原有的特征和id与新获取到的嵌入向量按行合并
    lookup_table = nodes.set_index(0).join(embeddings.set_index(embeddings.index))
    return np.array(lookup_table.dropna().iloc[:, -64:]), np.array(list(range(1, lookup_table.shape[0] + 1)))
# 创建嵌入向量
cora_embeddings, cora_labels = create_embeddings(graph)

透過以上程式碼,我們可以得到每個節點的64維節點嵌入表達。

訓練分類器

接下來我們將指定一些分類器並在Cora資料集上訓練它們,以期根據嵌入進行準確的節點分類操作。

from sklearn import svm, model_selection, metrics 
# 使用支持向量机作为示范的分类器
svm_model = svm.SVC(kernel='rbf', C=1, gamma=0.01)
# 进行交叉验证和分类训练
scores = model_selection.cross_val_score(
    svm_model, cora_embeddings, cora_labels, cv=5)
print(scores.mean())

為了獲得更好的效能,支援向量機作為分類器時,我們還需要對其進行相關調參操作。此處採取了5折交叉驗證的方式對其性能進行評估輸出。

視覺化節點嵌入

為了更好地理解,我們需要將人類難以理解的64維特徵表達進行降維處理以實現視覺化。 t-SNE是一種專門用於降低高維度資料複雜度的方法,我們在這裡使用它。它產生一個二維圖,相似節點之間緊密地聚集在一起,而這個圖是透過輸出僅包含兩個元素的機率分佈向量來實現的。

# 定义函数:可视化Nodes2Vec的结果
def visualize_results(embeddings, labels):
    # 使用t-SNE对数据进行降维并绘图
    tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300)
    tsne_results = tsne.fit_transform(embeddings)
    plt.figure(figsize=(10, 5))
    plt.scatter(tsne_results[:,0], tsne_results[:,1], c=labels)
    plt.colorbar()
    plt.show()
# 可视化结果
visualize_results(cora_embeddings, cora_labels)

Node2Vec產生的嵌入向量將被輸入到t-SNE中,其中t-SNE將64維向量表達進行了降維,並輸出我們可以使用 matplotlib 庫可視化的二維散點圖。大多數相關節點是否緊密聚集,可以在圖形介面中進行檢查。

以上是python基於Node2Vec怎麼實現節點分類及其視覺化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:yisu.com。如有侵權,請聯絡admin@php.cn刪除