搜尋
首頁科技週邊人工智慧比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

Transformer無疑是過去幾年內機器學習領域最受歡迎的模型。

自2017年在論文「Attention is All You Need」中提出之後,這個新的網路結構,刷爆了各大翻譯任務,同時創造了多項新的記錄。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

但Transformer在處理長位元組序列時有個硬傷,就是算力損耗嚴重,而Meta的研究人員的最新成果可以很好地解決這一缺陷。

他們推出了全新的模型架構,能跨多種格式產生超過100萬個token,並超越GPT-4等模型背後的現有 Transformer架構的功能。

這個模型被稱為「兆位元組」(Megabyte),是一種多尺度解碼器架構(Multi-scale Decoder Architecture),可以對超過一百萬位元組的序列進行端對端可微分建模。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

論文連結:https://arxiv.org/abs/2305.07185

Megabyte為什麼比Transformer強,就得先看看Transformer的不足之處在哪。

Transformer的不足

迄今為止幾類高效能的生成式AI模型,如OpenAI的GPT-4、Google的Bard,都是基於Transformer架構的模型。

但Meta的研究團隊認為,流行的Transformer架構可能達到其閾值,其中主要理由是Transformer設計中固有的兩個重要缺陷:

- 隨著輸入和輸出位元組長度的增加,自註意力的成本也迅速增加,如輸入的音樂、圖像或視訊檔案通常包含數兆位元組,然而大型解碼器(LLM)通常只使用幾千個上下文標記

- 前饋網路透過一系列數學運算和轉換來幫助語言模型理解和處理單詞,但在每個位置的基礎上難以實現可擴展性,這些網路獨立地對字元組或位置進行操作,從而導致大量的計算開銷

Megabyte強在哪

##相比Transformer,Megabyte模型展示了一種獨特的不同架構,將輸入和輸出序列劃分為patch而不是單一token。

如下圖,在每個patch中,本地AI模型產生結果,而全域模型管理和協調所有patch的最終輸出。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

首先,位元組序列被分割成固定大小的patch,大致類似token,這個模型由三個部分組成:

(1) patch嵌入器:透過無損地連接每個位元組的嵌入來簡單地編碼patch

(2) 一個全域模型:一個輸入和輸出patch表示的大型自迴歸變換器

#(3) 一個本地模型:一個預測patch中位元組的小型自迴歸模型

研究人員觀察到,對於多數任務而言字節預測都相對容易(如完成給定前幾個字的單字),這意味著每個字節的大型網路是不必要的,並且可以使用較小的模型進行內部預測。

這種方法解決了當今AI模型中普遍存在的可擴展性挑戰,Megabyte 模型的patch系統允許單一前饋網路在包含多個token的patch上運行,從而有效解決了自註意力縮放問題。

其中,Megabyte架構對長序列建模的Transformer進行了三項主要改進:

- 二次自註意力(Sub -quadratic self-attention)

大多數關於長序列模型的工作都集中在減輕自註意力的二次成本上,而Megabyte將長序列分解為兩個較短的序列,即使對於長序列也仍然易於處理。

- patch前饋層(Per-patch feedforward layers)

在GPT-3大小的模型中,超過98%的FLOPS用於計算位置前饋層,Megabyte每個patch使用大型前饋層,以相同的成本實現更大、性能更強的模型。在patch大小為P的情況下,基線轉換器將使用具有m個參數的相同前饋層P次,兆位元組可以以相同的成本使用具有mP個參數的層一次。

- 解碼中的平行性(Parallelism in Decoding)

Transformers必須在生成期間串行執行所有計算,因為每個時間步的輸入是前一個時間步的輸出,透過並行產生patch的表示,Megabyte允許在生成過程中實現更大的並行性。

例如,具有1.5B參數的Megabyte模型產生序列的速度比標準的350MTransformer快40%,同時在使用相同的計算量進行訓練時還能改善困惑度。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

Megabyte遠優於其他模型,並提供與在子詞上訓練的sota 模型競爭的結果

相較之下,OpenAI 的GPT-4有32,000個token的限制,而Anthropic的Claude有100,000個token的限制。

此外,在運算效率方面,在固定模型大小和序列長度範圍內,Megabyte比同等大小的Transformers和Linear Transformers使用更少的token,允許以相同的計算成本使用更大的模型。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷


#總之,這些改進使我們能夠在相同的運算預算下訓練更大、性能更好的模型,擴展到非常長的序列,並提高部署期間的生成速度。

未來將會如何

隨著AI軍備競賽進行地如火如荼,模型表現越來越強,參數也越來越高。

雖然GPT-3.5在175B個參數上進行了訓練,但有人猜測功能更強大的GPT-4在1萬億個參數上進行了訓練。

OpenAI的CEO Sam Altman最近也建議轉變策略,他表示公司正在考慮捨棄對龐大模型的訓練,而專注於其他性能的優化。

他將AI模型的未來等同於iPhone晶片,而大多數消費者對原始技術規格一無所知。

Meta的研究人員相信他們的創新架構來得正是時候,但也承認還有其他最佳化途徑。

例如採用修補技術的更有效率的編碼器模型、將序列分解為更小塊的解碼模型以及將序列預處理為壓縮token等,並且可以擴展現有Transformer架構的能力以建構新世代模型。

前特斯拉AI總監Andrej Karpathy也在這篇論文中發表了看法,他在推特上寫道:

#

這是非常有希望的,每個人都應該希望我們能在大模型中丟掉標記化,也不需要那些過長位元組的序列。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

#

以上是比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?Apr 11, 2025 pm 12:13 PM

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年

開始使用Meta Llama 3.2 -Analytics Vidhya開始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

AV字節:Meta' llama 3.2,Google的雙子座1.5等AV字節:Meta' llama 3.2,Google的雙子座1.5等Apr 11, 2025 pm 12:01 PM

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

與機器交談的人類成本:聊天機器人真的可以在乎嗎?與機器交談的人類成本:聊天機器人真的可以在乎嗎?Apr 11, 2025 pm 12:00 PM

連接的舒適幻想:我們在與AI的關係中真的在蓬勃發展嗎? 這個問題挑戰了麻省理工學院媒體實驗室“用AI(AHA)”研討會的樂觀語氣。事件展示了加油

了解Python的Scipy圖書館了解Python的Scipy圖書館Apr 11, 2025 am 11:57 AM

介紹 想像一下,您是科學家或工程師解決複雜問題 - 微分方程,優化挑戰或傅立葉分析。 Python的易用性和圖形功能很有吸引力,但是這些任務需要強大的工具

3種運行Llama 3.2的方法-Analytics Vidhya3種運行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式聯運AI強力 Meta的最新多模式模型Llama 3.2代表了AI的重大進步,具有增強的語言理解力,提高的準確性和出色的文本生成能力。 它的能力t

使用dagster自動化數據質量檢查使用dagster自動化數據質量檢查Apr 11, 2025 am 11:44 AM

數據質量保證:與Dagster自動檢查和良好期望 保持高數據質量對於數據驅動的業務至關重要。 隨著數據量和源的增加,手動質量控制變得效率低下,容易出現錯誤。

大型機在人工智能時代有角色嗎?大型機在人工智能時代有角色嗎?Apr 11, 2025 am 11:42 AM

大型機:AI革命的無名英雄 雖然服務器在通用應用程序上表現出色並處理多個客戶端,但大型機是專為關鍵任務任務而建立的。 這些功能強大的系統經常在Heavil中找到

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。