具體如下:
什麼是惡意流量穿透
假設我們的Redis裡存有一組使用者的註冊email,以email作為Key存在,同時它對應著DB裡的User表的部分欄位。
通常情況下,我們會在Redis中先檢查使用者是否為會員,因為從快取讀取資料更快。如果這個會員在快取中不存在那麼我們會去DB中查詢一下。
現在試想,有千萬個不同IP的請求(不要以為沒有,我們就在2018年和2019年碰到了,因為攻擊的成本很低)帶著Redis裡根本不存在的key來造訪你的網站,這時我們來設想一下:
請求到達Web伺服器;
- ##要求派發到應用程式層->微服務層;
- 請求去Redis撈數據,Redis內不存在這個Key; ##於是請求到達DB層,在DB建立connection後來進行一次查詢
- 無論是千萬還是上億的DB連線要求,Redis是否能負荷得起都不是問題,因為DB也會立即被擊垮。這就是“Redis穿透”又被稱為“緩存擊穿”,它會打爆你的緩存或者是連DB一起打爆進而引起一系列的“雪崩效應”。
怎麼防
可以透過使用布林過濾器,將user表中所有關鍵查詢欄位置於Redis的布隆過濾器中。有人會說,這不瘋了,我有4000萬會員? so what!
你把4000會員放在Redis裡是比較誇張,有些網站有8000萬、1億會員呢?因此我沒讓你直接放在Redis裡,而是放在布隆過濾器內!
布隆過濾器內不是直接把key,value這樣放進去的,它存放的內容是這麼一個樣的:
BloomFilter是一種空間效率的機率型資料結構,由Burton Howard Bloom 1970年提出的。通常用來判斷一個元素是否在集合中。儘管具有出色的空間效率,但是會導致假陽性錯誤的出現。
False positive&&False negatives由於BloomFiter犧牲了一定的準確率換取空間效率。所以帶來了False positive的問題。
BloomFilter在判斷一個元素在集合中的時候,會出現一定的錯誤率,這個錯誤率稱為False positive的。通常縮寫為fpp。
False negatives
BloomFilter使用長度為m bit的位元組數組,使用k個hash函數,增加一個元素: 透過k次hash將元素映射到位元組數組中k個位置中,並設定對應位置的字節為1。
由於它裡面存的都是bit,所以這個資料量會很小很小,小到什麼樣的程度呢?寫這篇部落格時我插了100萬個email訊息進入Redis的bloom filter也只佔用了3Mb不到。
Bloom Filter會有幾比較關鍵的值,根據這個值你是大致可以算出放多少條資料然後它的誤傷率在多少時會佔用多少系統資源的。這個演算法有一個網址:https://krisives.github.io/bloom-calculator/,我們放入100萬個數據,假設誤傷率在0.001%,看,它自動得出Redis需要申請的系統記憶體資源是多少?
那麼要怎麼解決這個誤傷率呢?很簡單的,當有誤傷時業務或者是運營會來報誤傷率,這時你只要添加一個小白名單就是了,相對於100萬條數據來說,1000個白名單不是問題。 Bloom filter的查詢速度非常快,一般在80-100毫秒內就可以回傳查詢結果,告訴呼叫端該Key是否存在。
布隆過濾器的另一個用武場景
假設我用python爬蟲爬了4億條url,需要去重?
看,布隆濾鏡就是用於這個場景的。
下面就開始我們的Redis BloomFilter之旅。
給Redis安裝Bloom Filter
Redis從4.0才開始支援bloom filter,因此本例我們使用的是Redis5.4。
Redis的bloom filter下載網址在這:https://github.com/RedisLabsModules/redisbloom.git
git clone https://github.com/RedisLabsModules/redisbloom.git cd redisbloom make # 编译
讓Redis啟動時可以載入bloom filter有兩種方式:
手動載入式:redis-server --loadmodule ./redisbloom/rebloom.so
編輯Redis的redis.conf文件,加入:
loadmodule /soft/redisbloom/redisbloom.so
Like this:
#
在Redis里使用Bloom Filter
基本指令:
bf.reserve {key} {error_rate} {size}
127.0.0.1:6379> bf.reserve userid 0.01 100000 OK
上面这条命令就是:创建一个空的布隆过滤器,并设置一个期望的错误率和初始大小。{error_rate}过滤器的错误率在0-1之间,如果要设置0.1%,则应该是0.001。该数值越接近0,内存消耗越大,对cpu利用率越高。
bf.add {key} {item}
127.0.0.1:6379> bf.add userid '181920' (integer) 1
上面这条命令就是:往过滤器中添加元素。如果key不存在,过滤器会自动创建。
bf.exists {key} {item}
127.0.0.1:6379> bf.exists userid '101310299' (integer) 1
这个命令的作用是检查 Bloom 过滤器中是否包含指定 key 的值。存在:返回1,不存在:返回0。
结合SpringBoot使用
网上很多写的都是要么是直接使用jedis来操作的,或者是java里execute一个外部进程来调用Redis的bloom filter指令的。许多代码调试不通或只能达到helloworld级别,无法用于生产级别的应用。
笔者给出的代码保障读者完全可用!
笔者不是数学家,因此就借用了google的guava包来实现了核心算法,核心代码如下:
BloomFilterHelper.java
package org.sky.platform.util; import com.google.common.base.Preconditions; import com.google.common.hash.Funnel; import com.google.common.hash.Hashing; public class BloomFilterHelper<T> { private int numHashFunctions; private int bitSize; private Funnel<T> funnel; public BloomFilterHelper(Funnel<T> funnel, int expectedInsertions, double fpp) { Preconditions.checkArgument(funnel != null, "funnel不能为空"); this.funnel = funnel; bitSize = optimalNumOfBits(expectedInsertions, fpp); numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize); } int[] murmurHashOffset(T value) { int[] offset = new int[numHashFunctions]; long hash74 = Hashing.murmur3_128().hashObject(value, funnel).asLong(); int hash2 = (int) hash74; int hash3 = (int) (hash74 >>> 32); for (int i = 1; i <= numHashFunctions; i++) { int nextHash = hash2 + i * hash3; if (nextHash < 0) { nextHash = ~nextHash; } offset[i - 1] = nextHash % bitSize; } return offset; } /** * 计算bit数组的长度 */ private int optimalNumOfBits(long n, double p) { if (p == 0) { p = Double.MIN_VALUE; } return (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2))); } /** * 计算hash方法执行次数 */ private int optimalNumOfHashFunctions(long n, long m) { return Math.max(1, (int) Math.round((double) m / n * Math.log(2))); } }
下面放出全工程解说,我已经将源码上传到了我的git上了,确保读者可用,源码地址在这:https://github.com/mkyuangithub/mkyuangithub.git
搭建spring boot工程
项目Redis配置
我们在redis-practice工程里建立一个application.properties文件,内容如下:
spring.redis.database=0 spring.redis.host=192.168.56.101 spring.redis.port=6379 spring.redis.password=111111 spring.redis.pool.max-active=10 spring.redis.pool.max-wait=-1 spring.redis.pool.max-idle=10 spring.redis.pool.min-idle=0 spring.redis.timeout=1000
以上这个是demo环境的配置。
我们此处依旧使用的是在前一篇springboot+nacos+dubbo实现异常统一管理中的xxx-project->sky-common->nacos-parent的依赖结构。
在redis-practice工程的org.sky.config包中放入redis的springboot配置
RedisConfig.java
package org.sky.config; import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.ObjectMapper; import org.springframework.cache.CacheManager; import org.springframework.cache.annotation.CachingConfigurerSupport; import org.springframework.cache.annotation.EnableCaching; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.cache.RedisCacheManager; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.core.*; import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer; import org.springframework.data.redis.serializer.StringRedisSerializer; @Configuration @EnableCaching public class RedisConfig extends CachingConfigurerSupport { /** * 选择redis作为默认缓存工具 * * @param redisTemplate * @return */ @Bean public CacheManager cacheManager(RedisTemplate redisTemplate) { RedisCacheManager rcm = new RedisCacheManager(redisTemplate); return rcm; } /** * retemplate相关配置 * * @param factory * @return */ @Bean public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) { RedisTemplate<String, Object> template = new RedisTemplate<>(); // 配置连接工厂 template.setConnectionFactory(factory); // 使用Jackson2JsonRedisSerializer来序列化和反序列化redis的value值(默认使用JDK的序列化方式) Jackson2JsonRedisSerializer jacksonSeial = new Jackson2JsonRedisSerializer(Object.class); ObjectMapper om = new ObjectMapper(); // 指定要序列化的域,field,get和set,以及修饰符范围,ANY是都有包括private和public om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); // 指定序列化输入的类型,类必须是非final修饰的,final修饰的类,比如String,Integer等会跑出异常 om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jacksonSeial.setObjectMapper(om); // 值采用json序列化 template.setValueSerializer(jacksonSeial); // 使用StringRedisSerializer来序列化和反序列化redis的key值 template.setKeySerializer(new StringRedisSerializer()); // 设置hash key 和value序列化模式 template.setHashKeySerializer(new StringRedisSerializer()); template.setHashValueSerializer(jacksonSeial); template.afterPropertiesSet(); return template; } /** * 对hash类型的数据操作 * * @param redisTemplate * @return */ @Bean public HashOperations<String, String, Object> hashOperations(RedisTemplate<String, Object> redisTemplate) { return redisTemplate.opsForHash(); } /** * 对redis字符串类型数据操作 * * @param redisTemplate * @return */ @Bean public ValueOperations<String, Object> valueOperations(RedisTemplate<String, Object> redisTemplate) { return redisTemplate.opsForValue(); } /** * 对链表类型的数据操作 * * @param redisTemplate * @return */ @Bean public ListOperations<String, Object> listOperations(RedisTemplate<String, Object> redisTemplate) { return redisTemplate.opsForList(); } /** * 对无序集合类型的数据操作 * * @param redisTemplate * @return */ @Bean public SetOperations<String, Object> setOperations(RedisTemplate<String, Object> redisTemplate) { return redisTemplate.opsForSet(); } /** * 对有序集合类型的数据操作 * * @param redisTemplate * @return */ @Bean public ZSetOperations<String, Object> zSetOperations(RedisTemplate<String, Object> redisTemplate) { return redisTemplate.opsForZSet(); } }
这个配置除实现了springboot自动发现redis在application.properties中的配置外我们还添加了不少redis基本的数据结构的操作的封装。
我们为此还要再封装一套Redis Util小组件,它们位于sky-common工程中
RedisUtil.java
package org.sky.platform.util; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; import java.util.Collection; import java.util.Date; import java.util.Set; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import java.util.stream.Stream; import com.google.common.base.Preconditions; import org.springframework.data.redis.core.RedisTemplate; @Component public class RedisUtil { @Autowired private RedisTemplate<String, String> redisTemplate; /** * 默认过期时长,单位:秒 */ public static final long DEFAULT_EXPIRE = 60 * 60 * 24; /** * 不设置过期时长 */ public static final long NOT_EXPIRE = -1; public boolean existsKey(String key) { return redisTemplate.hasKey(key); } /** * 重名名key,如果newKey已经存在,则newKey的原值被覆盖 * * @param oldKey * @param newKey */ public void renameKey(String oldKey, String newKey) { redisTemplate.rename(oldKey, newKey); } /** * newKey不存在时才重命名 * * @param oldKey * @param newKey * @return 修改成功返回true */ public boolean renameKeyNotExist(String oldKey, String newKey) { return redisTemplate.renameIfAbsent(oldKey, newKey); } /** * 删除key * * @param key */ public void deleteKey(String key) { redisTemplate.delete(key); } /** * 删除多个key * * @param keys */ public void deleteKey(String... keys) { Set<String> kSet = Stream.of(keys).map(k -> k).collect(Collectors.toSet()); redisTemplate.delete(kSet); } /** * 删除Key的集合 * * @param keys */ public void deleteKey(Collection<String> keys) { Set<String> kSet = keys.stream().map(k -> k).collect(Collectors.toSet()); redisTemplate.delete(kSet); } /** * 设置key的生命周期 * * @param key * @param time * @param timeUnit */ public void expireKey(String key, long time, TimeUnit timeUnit) { redisTemplate.expire(key, time, timeUnit); } /** * 指定key在指定的日期过期 * * @param key * @param date */ public void expireKeyAt(String key, Date date) { redisTemplate.expireAt(key, date); } /** * 查询key的生命周期 * * @param key * @param timeUnit * @return */ public long getKeyExpire(String key, TimeUnit timeUnit) { return redisTemplate.getExpire(key, timeUnit); } /** * 将key设置为永久有效 * * @param key */ public void persistKey(String key) { redisTemplate.persist(key); } /** * 根据给定的布隆过滤器添加值 */ public <T> void addByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) { Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空"); int[] offset = bloomFilterHelper.murmurHashOffset(value); for (int i : offset) { redisTemplate.opsForValue().setBit(key, i, true); } } /** * 根据给定的布隆过滤器判断值是否存在 */ public <T> boolean includeByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) { Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空"); int[] offset = bloomFilterHelper.murmurHashOffset(value); for (int i : offset) { if (!redisTemplate.opsForValue().getBit(key, i)) { return false; } } return true; } }
RedisKeyUtil.java
package org.sky.platform.util; public class RedisKeyUtil { /** * redis的key 形式为: 表名:主键名:主键值:列名 * * @param tableName 表名 * @param majorKey 主键名 * @param majorKeyValue 主键值 * @param column 列名 * @return */ public static String getKeyWithColumn(String tableName, String majorKey, String majorKeyValue, String column) { StringBuffer buffer = new StringBuffer(); buffer.append(tableName).append(":"); buffer.append(majorKey).append(":"); buffer.append(majorKeyValue).append(":"); buffer.append(column); return buffer.toString(); } /** * redis的key 形式为: 表名:主键名:主键值 * * @param tableName 表名 * @param majorKey 主键名 * @param majorKeyValue 主键值 * @return */ public static String getKey(String tableName, String majorKey, String majorKeyValue) { StringBuffer buffer = new StringBuffer(); buffer.append(tableName).append(":"); buffer.append(majorKey).append(":"); buffer.append(majorKeyValue).append(":"); return buffer.toString(); } }
然后就是制作 redis里如何使用BloomFilter的BloomFilterHelper.java了,它也位于sky-common文件夹,源码如上已经贴了,因此此处就不再作重复。
最后我们在sky-common里放置一个UserVO用于演示
UserVO.java
package org.sky.vo; import java.io.Serializable; public class UserVO implements Serializable { private String name; private String address; private Integer age; private String email = ""; public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getAddress() { return address; } public void setAddress(String address) { this.address = address; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } }
下面给出我们所有gitrepo里依赖的nacos-parent的pom.xml文件内容,此次我们增加了对于“spring-boot-starter-data-redis”,它跟着我们的全局springboot版本走:
parent工程的pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.sky.demo</groupId> <artifactId>nacos-parent</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>pom</packaging> <description>Demo project for Spring Boot Dubbo Nacos</description> <modules> </modules> <properties> <java.version>1.8</java.version> <spring-boot.version>1.5.15.RELEASE</spring-boot.version> <dubbo.version>2.7.3</dubbo.version> <curator-framework.version>4.0.1</curator-framework.version> <curator-recipes.version>2.8.0</curator-recipes.version> <druid.version>1.1.20</druid.version> <guava.version>27.0.1-jre</guava.version> <fastjson.version>1.2.59</fastjson.version> <dubbo-registry-nacos.version>2.7.3</dubbo-registry-nacos.version> <nacos-client.version>1.1.4</nacos-client.version> <mysql-connector-java.version>5.1.46</mysql-connector-java.version> <disruptor.version>3.4.2</disruptor.version> <aspectj.version>1.8.13</aspectj.version> <nacos-service.version>0.0.1-SNAPSHOT</nacos-service.version> <spring.data.redis>1.8.14-RELEASE</spring.data.redis> <skycommon.version>0.0.1-SNAPSHOT</skycommon.version> <maven.compiler.source>${java.version}</maven.compiler.source> <maven.compiler.target>${java.version}</maven.compiler.target> <compiler.plugin.version>3.8.1</compiler.plugin.version> <war.plugin.version>3.2.3</war.plugin.version> <jar.plugin.version>3.1.2</jar.plugin.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> </properties> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> <version>${spring-boot.version}</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-spring-boot-starter</artifactId> <version>${dubbo.version}</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo</artifactId> <version>${dubbo.version}</version> </dependency> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-framework</artifactId> <version>${curator-framework.version}</version> </dependency> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-recipes</artifactId> <version>${curator-recipes.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>${mysql-connector-java.version}</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</artifactId> <version>${druid.version}</version> </dependency> <dependency> <groupId>com.lmax</groupId> <artifactId>disruptor</artifactId> <version>${disruptor.version}</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>${guava.version}</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>${fastjson.version}</version> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-registry-nacos</artifactId> <version>${dubbo-registry-nacos.version}</version> </dependency> <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>${nacos-client.version}</version> </dependency> <dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> <version>${aspectj.version}</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> <version>${spring-boot.version}</version> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>${compiler.plugin.version}</version> <configuration> <source>${java.version}</source> <target>${java.version}</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-war-plugin</artifactId> <version>${war.plugin.version}</version> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <version>${jar.plugin.version}</version> </plugin> </plugins> </build> </project>
sky-common中pom.xml文件
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.sky.demo</groupId> <artifactId>skycommon</artifactId> <version>0.0.1-SNAPSHOT</version> <parent> <groupId>org.sky.demo</groupId> <artifactId>nacos-parent</artifactId> <version>0.0.1-SNAPSHOT</version> </parent> <dependencies> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-framework</artifactId> </dependency> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-recipes</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.spockframework</groupId> <artifactId>spock-core</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.spockframework</groupId> <artifactId>spock-spring</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-configuration-processor</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-log4j2</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> <exclusions> <exclusion> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-logging</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> </dependency> <dependency> <groupId>com.lmax</groupId> <artifactId>disruptor</artifactId> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> </dependencies> </project>
到此,我们的springboot+redis基本框架、util类、bloomfilter组件搭建完毕,接下来我们重点说我们的demo工程
Demo工程:redis-practice说明
pom.xml文件,它依赖于nacos-parent同时还引用了sky-common
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.sky.demo</groupId> <artifactId>redis-practice</artifactId> <version>0.0.1-SNAPSHOT</version> <description>Demo Redis Advanced Features</description> <parent> <groupId>org.sky.demo</groupId> <artifactId>nacos-parent</artifactId> <version>0.0.1-SNAPSHOT</version> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> <exclusions> <exclusion> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-logging</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo</artifactId> </dependency> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-framework</artifactId> </dependency> <dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-recipes</artifactId> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.spockframework</groupId> <artifactId>spock-core</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.spockframework</groupId> <artifactId>spock-spring</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-configuration-processor</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-log4j2</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> <exclusions> <exclusion> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-logging</artifactId> </exclusion> </exclusions> <exclusion> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-tomcat</artifactId> </exclusion> </dependency> <dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> </dependency> <dependency> <groupId>com.lmax</groupId> <artifactId>disruptor</artifactId> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> </dependency> <dependency> <groupId>org.sky.demo</groupId> <artifactId>skycommon</artifactId> <version>${skycommon.version}</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> </dependencies> <build> <sourceDirectory>src/main/java</sourceDirectory> <testSourceDirectory>src/test/java</testSourceDirectory> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> <resources> <resource> <directory>src/main/resources</directory> </resource> <resource> <directory>src/main/webapp</directory> <targetPath>META-INF/resources</targetPath> <includes> <include>**/**</include> </includes> </resource> <resource> <directory>src/main/resources</directory> <filtering>true</filtering> <includes> <include>application.properties</include> <include>application-${profileActive}.properties</include> </includes> </resource> </resources> </build> </project>
用于启动的Application.java
package org.sky; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.EnableAutoConfiguration; import org.springframework.context.annotation.ComponentScan; import org.springframework.transaction.annotation.EnableTransactionManagement; @EnableTransactionManagement @ComponentScan(basePackages = { "org.sky" }) @EnableAutoConfiguration public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } }
然后我们制作了一个controller名为UserController,该controller里有两个方法:
public ResponseEntity
addUser(@RequestBody String params),该方法用于接受来自外部的api post然后把一条email地址塞入redis的bloomfilter中; public ResponseEntity
findEmailInBloom(@RequestBody String params),该方法用于接受来自外部的api post然后去redis的bloomfilter中验证是否外部输入的user信息中的email地址在上百万的email记录中存在;
以此来完成验证塞入redis的bloom filter中上百万条记录占用了多少内存以及使用bloom filter查询一条记录有多快。
UserController.java
package org.sky.controller; import java.util.HashMap; import java.util.Map; import java.util.concurrent.TimeUnit; import javax.annotation.Resource; import org.sky.platform.util.BloomFilterHelper; import org.sky.platform.util.RedisUtil; import org.sky.vo.UserVO; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.core.ValueOperations; import org.springframework.http.HttpHeaders; import org.springframework.http.HttpStatus; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; import com.google.common.base.Charsets; import com.google.common.hash.Funnel; @RestController @RequestMapping("user") public class UserController extends BaseController { @Resource private RedisTemplate redisTemplate; @Resource private RedisUtil redisUtil; @PostMapping(value = "/addEmailToBloom", produces = "application/json") public ResponseEntity<String> addUser(@RequestBody String params) { ResponseEntity<String> response = null; String returnResultStr; HttpHeaders headers = new HttpHeaders(); headers.setContentType(MediaType.APPLICATION_JSON_UTF8); Map<String, Object> result = new HashMap<>(); try { JSONObject requestJsonObj = JSON.parseObject(params); UserVO inputUser = getUserFromJson(requestJsonObj); BloomFilterHelper<String> myBloomFilterHelper = new BloomFilterHelper<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1500000, 0.00001); redisUtil.addByBloomFilter(myBloomFilterHelper, "email_existed_bloom", inputUser.getEmail()); result.put("code", HttpStatus.OK.value()); result.put("message", "add into bloomFilter successfully"); result.put("email", inputUser.getEmail()); returnResultStr = JSON.toJSONString(result); logger.info("returnResultStr======>" + returnResultStr); response = new ResponseEntity<>(returnResultStr, headers, HttpStatus.OK); } catch (Exception e) { logger.error("add a new product with error: " + e.getMessage(), e); result.put("message", "add a new product with error: " + e.getMessage()); returnResultStr = JSON.toJSONString(result); response = new ResponseEntity<>(returnResultStr, headers, HttpStatus.INTERNAL_SERVER_ERROR); } return response; } @PostMapping(value = "/checkEmailInBloom", produces = "application/json") public ResponseEntity<String> findEmailInBloom(@RequestBody String params) { ResponseEntity<String> response = null; String returnResultStr; HttpHeaders headers = new HttpHeaders(); headers.setContentType(MediaType.APPLICATION_JSON_UTF8); Map<String, Object> result = new HashMap<>(); try { JSONObject requestJsonObj = JSON.parseObject(params); UserVO inputUser = getUserFromJson(requestJsonObj); BloomFilterHelper<String> myBloomFilterHelper = new BloomFilterHelper<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1500000, 0.00001); boolean answer = redisUtil.includeByBloomFilter(myBloomFilterHelper, "email_existed_bloom", inputUser.getEmail()); logger.info("answer=====" + answer); result.put("code", HttpStatus.OK.value()); result.put("email", inputUser.getEmail()); result.put("exist", answer); returnResultStr = JSON.toJSONString(result); logger.info("returnResultStr======>" + returnResultStr); response = new ResponseEntity<>(returnResultStr, headers, HttpStatus.OK); } catch (Exception e) { logger.error("add a new product with error: " + e.getMessage(), e); result.put("message", "add a new product with error: " + e.getMessage()); returnResultStr = JSON.toJSONString(result); response = new ResponseEntity<>(returnResultStr, headers, HttpStatus.INTERNAL_SERVER_ERROR); } return response; } private UserVO getUserFromJson(JSONObject requestObj) { String userName = requestObj.getString("username"); String userAddress = requestObj.getString("address"); String userEmail = requestObj.getString("email"); int userAge = requestObj.getInteger("age"); UserVO u = new UserVO(); u.setName(userName); u.setAge(userAge); u.setEmail(userEmail); u.setAddress(userAddress); return u; } }
注意UserController中的BloomFilterHelper的用法,我在Redis的bloomfilter里申明了可以用于存放150万数据的空间。如果存和的数据大于了你预先申请的空间怎么办?那么它会增加“误伤率”。
下面我们把这个项目运行起来看看效果吧。
运行redis-practice工程
运行起来后
我们可以使用postman先来做个小实验
我们使用"、addEmailToBloom"往redis bloom filter里插入了一个“yumi@yahoo.com”的email。
接下来我们会使用“/checkEmailInBloom”来验证这个email地址是否存在
我们使用redisclient连接上我们的redis查看,这个值确实也是插入进了bloom filter了。
使用压测工具喂120万条数据进入Redis Bloomfilter看实际效果
接下来,我们用jmeter对着“/addEmailToBloom”喂上个120万左右数据进去,然后我们再来看bloom filter在120万email按照布隆算 法喂进去后我们的系统是如何表现的。
我这边使用的是apache-jmeter5.0,为了偷懒,我用了apache-jmeter里的_RandomString函数来动态创造16位字符长度的email。这边用户名、地址信息都是恒定,就是email是每次不一样,都是一串16位的随机字符+“@163.com”。
jmeter中BeanShell产生16位字符随机组成email的函数
useremail="${__RandomString(16,abcdefghijklmnop,myemail)}"+"@163.com"; vars.put("random_email",useremail);
jmeter测试计划设置成了75个线程,连续运行30分钟(实践上笔者运行了3个30分钟,因为是demo环境,30分钟每次插大概40万条数据进去吧)
jmeter post请求
然后我们使用jmeter命令行来运行这个测试计划:
jmeter -n -t add_randomemail_to_bloom.jmx -l add_email_to_bloom\report\03-result.csv -j add_email_to_bloom\logs\03-log.log -e -o add_email_to_bloom\html_report_3
它代表:
-t 指定jmeter执行计划文件所在路径;
-l 生成report的目录,这个目录如果不存在则创建 ,必须是一个空目录;
-j 生成log的目录,这个目录如果不存在则创建 ,必须是一个空目录;
-e 生成html报告,它配合着-o参数一起使用;
-o 生成html报告所在的路径,这个目录如果不存在则创建 ,必须是一个空目录;
回车后它就开始运行了
一直执行到这个过程全部结束,跳出command命令符为止。
我们查看我们用-e -o生成的jmeter html报告,前面说过了,我一共运行了3次,第一次是10分钟70059条数据 ,第二次是30分钟40多万条数据 ,第三次是45他钟70多万条数据。我共计插入了1,200,790条email。
而这120万数据总计在redis中占用内存不超过8mb,见下面demo环境的zabbix录制的记录
120万条数据插进去后,我们接着从我们的log4j的输出中随便找一条logger.info住的email如:egpoghnfjekjajdo@163.com来看一下,redis bloomfilter找到这条记录的表现如何,76ms,我运行了多次,平均在80ms左右:
通过上面这么一个实例,大家可以看到把email以hash后并以bit的形式存入bloomfilter后,它占用的内存是多么的小,而查询效率又是多么的高。
往往在生产上,我们经常会把上千万或者是上亿的记录"load"进bloomfilter,然后拿它去做“防击穿”或者是去重的动作。
只要bloomfilter中不存在的key直接回傳客戶端false,配合nginx的動態擴充、cdn、waf、介面層的緩存,整個網站抗6位數乃至7位數的並發其實是件非常簡單的事。
以上是SpringBoot+Redis布隆過濾器防惡意流量擊穿快取的方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Redis的數據模型和結構包括五種主要類型:1.字符串(String):用於存儲文本或二進制數據,支持原子操作。 2.列表(List):有序元素集合,適合隊列和堆棧。 3.集合(Set):無序唯一元素集合,支持集合運算。 4.有序集合(SortedSet):帶分數的唯一元素集合,適用於排行榜。 5.哈希表(Hash):鍵值對集合,適合存儲對象。

Redis的數據庫方法包括內存數據庫和鍵值存儲。 1)Redis將數據存儲在內存中,讀寫速度快。 2)它使用鍵值對存儲數據,支持複雜數據結構,如列表、集合、哈希表和有序集合,適用於緩存和NoSQL數據庫。

Redis是一個強大的數據庫解決方案,因為它提供了極速性能、豐富的數據結構、高可用性和擴展性、持久化能力以及廣泛的生態系統支持。 1)極速性能:Redis的數據存儲在內存中,讀寫速度極快,適合高並發和低延遲應用。 2)豐富的數據結構:支持多種數據類型,如列表、集合等,適用於多種場景。 3)高可用性和擴展性:支持主從復制和集群模式,實現高可用性和水平擴展。 4)持久化和數據安全:通過RDB和AOF兩種方式實現數據持久化,確保數據的完整性和可靠性。 5)廣泛的生態系統和社區支持:擁有龐大的生態系統和活躍社區,

Redis的關鍵特性包括速度、靈活性和豐富的數據結構支持。 1)速度:Redis作為內存數據庫,讀寫操作幾乎瞬時,適用於緩存和會話管理。 2)靈活性:支持多種數據結構,如字符串、列表、集合等,適用於復雜數據處理。 3)數據結構支持:提供字符串、列表、集合、哈希表等,適合不同業務需求。

Redis的核心功能是高性能的內存數據存儲和處理系統。 1)高速數據訪問:Redis將數據存儲在內存中,提供微秒級別的讀寫速度。 2)豐富的數據結構:支持字符串、列表、集合等,適應多種應用場景。 3)持久化:通過RDB和AOF方式將數據持久化到磁盤。 4)發布訂閱:可用於消息隊列或實時通信系統。

Redis支持多種數據結構,具體包括:1.字符串(String),適合存儲單一值數據;2.列表(List),適用於隊列和棧;3.集合(Set),用於存儲不重複數據;4.有序集合(SortedSet),適用於排行榜和優先級隊列;5.哈希表(Hash),適合存儲對像或結構化數據。

Redis計數器是一種使用Redis鍵值對存儲來實現計數操作的機制,包含以下步驟:創建計數器鍵、增加計數、減少計數、重置計數和獲取計數。 Redis計數器的優勢包括速度快、高並發、持久性和簡單易用。它可用於用戶訪問計數、實時指標跟踪、遊戲分數和排名以及訂單處理計數等場景。

使用 Redis 命令行工具 (redis-cli) 可通過以下步驟管理和操作 Redis:連接到服務器,指定地址和端口。使用命令名稱和參數向服務器發送命令。使用 HELP 命令查看特定命令的幫助信息。使用 QUIT 命令退出命令行工具。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

禪工作室 13.0.1
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

記事本++7.3.1
好用且免費的程式碼編輯器