在本文中,我們將討論預測函數的差異和它們的用途。
在機器學習中,predict和predict_proba、predict_log_proba和decision_function方法都是用來根據訓練好的模型來預測的。
predict方法
使用predict方法可進行二元分類或多元分類預測,輸出預測標籤。例如,如果你已經訓練了一個邏輯迴歸模型來預測一個客戶是否會購買產品,則可以使用predict方法來預測一個新客戶是否會購買產品。
我們將使用來自scikit-learn的乳癌資料集。這個資料集包含了腫瘤觀察結果和腫瘤是惡性還是良性的相應標籤。
import numpy as npfrom sklearn.svm import SVCfrom sklearn.preprocessing import StandardScalerfrom sklearn.pipeline import make_pipelineimport matplotlib.pyplot as pltfrom sklearn.datasets import load_breast_cancer# 加载数据集dataset = load_breast_cancer(as_frame=True)# 创建特征和目标X = dataset['data']y = dataset['target']# 将数据集分割成训练集和测试集from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y , test_size=0.25, random_state=0)# 我们创建一个简单的管道来规范数据并使用`SVC`分类器训练模型svc_clf = make_pipeline(StandardScaler(),SVC(max_iter=1000, probability=True))svc_clf.fit(X_train, y_train)
# 我们正在预测X_test的第一个条目print(svc_clf.predict(X_test[:1]))
# 预测X_test的第一个条目属于哪一类[0]
predict_proba方法
使用predict_proba函數可以對每個類別進行機率預測,並傳回所可能的每個類別標籤的機率估計。在二元或多元分類問題中,通常採用這種方法以確定每種可能結果的機率。例如,如果你已經訓練了一個模型,將動物的圖像分為貓、狗和馬,你可以使用predict_proba方法來獲得每個類別標籤的機率估計。
print(svc_clf.predict_proba(X_test[:1]))
[[0.99848307 0.00151693]]
predict_log_proba方法
predict_log_proba方法與predict_proba類似,但它會傳回機率估計值的對數,而不是原始機率。這對處理極小或極大的機率值是十分實用的,因為可以避免數值下溢或溢出的問題。
print(svc_clf.predict_log_proba(X_test[:1]))
[[-1.51808474e-03 -6.49106473e+00]]
decision_function方法
Linear binary classification models can utilize the decision_function method.。它會針對每個輸入資料點產生一個分數,這個分數可用來推測其對應的類別標籤。可以根據應用或領域知識來設定將資料點分類為正或負的閾值。
print(svc_clf.decision_function(X_test[:1]))
[-1.70756057]
總結
- 當你想要得到輸入資料的預測類別標籤時,對二元或多元分類問題使用predict。
- 當你想要獲得每個可能的類別標籤的機率估計值時,請使用predict_proba處理二元或多元分類問題。
- 當你需要處理非常小或非常大的機率值時,或者當你想要避免數字下溢或溢位問題時,請使用predict_log_proba。
- 當你想要取得每個輸入資料點的分數時,使用decision_function處理線性模型的二元分類問題。
注意:某些分類器的預測方法可能不完整或需要額外參數才能存取函數。例如:SVC需要將機率參數設為True,才能使用機率預測。
以上是使用Scikit-Learn,快速掌握機器學習預測方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

經常使用“ AI-Ready勞動力”一詞,但是在供應鏈行業中確實意味著什麼? 供應鏈管理協會(ASCM)首席執行官安倍·埃什肯納齊(Abe Eshkenazi)表示,它表示能夠評論家的專業人員

分散的AI革命正在悄悄地獲得動力。 本週五在德克薩斯州奧斯汀,Bittensor最終遊戲峰會標誌著一個關鍵時刻,將分散的AI(DEAI)從理論轉變為實際應用。 與閃閃發光的廣告不同

企業AI面臨數據集成挑戰 企業AI的應用面臨一項重大挑戰:構建能夠通過持續學習業務數據來保持準確性和實用性的系統。 NeMo微服務通過創建Nvidia所描述的“數據飛輪”來解決這個問題,允許AI系統通過持續接觸企業信息和用戶互動來保持相關性。 這個新推出的工具包包含五個關鍵微服務: NeMo Customizer 處理大型語言模型的微調,具有更高的訓練吞吐量。 NeMo Evaluator 提供針對自定義基準的AI模型簡化評估。 NeMo Guardrails 實施安全控制,以保持合規性和適當的

AI:藝術與設計的未來畫卷 人工智能(AI)正以前所未有的方式改變藝術與設計領域,其影響已不僅限於業餘愛好者,更深刻地波及專業人士。 AI生成的藝術作品和設計方案正在迅速取代傳統的素材圖片和許多交易性設計活動中的設計師,例如廣告、社交媒體圖片生成和網頁設計。 然而,專業藝術家和設計師也發現AI的實用價值。他們將AI作為輔助工具,探索新的美學可能性,融合不同的風格,創造新穎的視覺效果。 AI幫助藝術家和設計師自動化重複性任務,提出不同的設計元素並提供創意輸入。 AI支持風格遷移,即將一種圖像的風格應用

Zoom最初以其視頻會議平台而聞名,它通過創新使用Agentic AI來引領工作場所革命。 最近與Zoom的CTO XD黃的對話揭示了該公司雄心勃勃的願景。 定義代理AI 黃d

AI會徹底改變教育嗎? 這個問題是促使教育者和利益相關者的認真反思。 AI融入教育既提出了機遇和挑戰。 正如科技Edvocate的馬修·林奇(Matthew Lynch)所指出的那樣

美國科學研究和技術發展或將面臨挑戰,這或許是由於預算削減導致的。據《自然》雜誌報導,2025年1月至3月期間,美國科學家申請海外工作的數量比2024年同期增加了32%。此前一項民意調查顯示,75%的受訪研究人員正在考慮前往歐洲和加拿大尋找工作。 過去幾個月,數百項NIH和NSF的撥款被終止,NIH今年的新撥款減少了約23億美元,下降幅度接近三分之一。洩露的預算提案顯示,特朗普政府正在考慮大幅削減科學機構的預算,削減幅度可能高達50%。 基礎研究領域的動盪也影響了美國的一大優勢:吸引海外人才。 35

Openai推出了強大的GPT-4.1系列:一個專為現實世界應用設計的三種高級語言模型家族。 這種巨大的飛躍提供了更快的響應時間,增強的理解和大幅降低了成本


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3漢化版
中文版,非常好用

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能