搜尋
首頁科技週邊人工智慧人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

前段時間,浙大微軟團隊提出的HuggingGPT在整個科技圈爆火。

這個大模型協作系統利用ChatGPT作為控制器,隨意呼叫HuggingFace中的各種模型,以實現多模態任務。

讓ChatGPT當「老闆」,已經成為許多人看好的方向。

這不,該來的還是來了...

#全球最熱門的AI社群HuggingFace官方出品「Transformers Agent」,透過控制10萬多個AI,也能實現魔法。

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

英偉達科學家Jim Fan稱讚道,這是向Everything App邁出的第一步,隨著生態系統的擴大,它的能力也不斷成長。

他繼續表示,HuggingGPT是這個想法首次大規模地展示,它使用GPT作為控制器,動態地選擇工具(模型)來解決多階段任務。

ChatGPT的「App Store」當然是AI工俱生態系統應用的一個實例。全新Transformers Agent讓你擁有超強buff,快速建構AI智能體。

Transformers,無所不能

用Transformers Agent,你可以張口來圖,還能讓它為你唸出來。

先來看看幾個例子~

<code>agent.run("Caption the following image", image=image)</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

#第一個先從簡單的開始。輸入一張圖片然後配個解說,一隻可愛的河狸在水裡游泳(超可愛,想rua)。

<code>agent.run("Read the following text out loud", text=text)</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

第二個也不難,簡簡單單文字轉語音。

<code>agent.run("In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?",document=document,)</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

這個上了點難度。輸入的要求是,說出科學諮詢委員會會議將在哪裡舉辦。

當然對AI來說,檢索到最後一行也是找到了答案。

使用者在使用agent.run之前,需要將一個智能體實例化,也就是一個大型語言模型(LLM)。

研究人員提供了對OpenAI模型的支持,以及來自BigCode和OpenAssistant的開源替代品。

雖然OpenAI的模型效能更好,但使用者得有OpenAI的API金鑰,所以不是免費使用。

Hugging Face表示,正在提供BigCode和OpenAssistant等模型的免費存取端點。

首先,使用者需要安裝智能體附加程式。

<code>pip install transformers[agents]</code>

要想使用OpenAI的模型,使用者需要在安裝OpenAI dependency項目後實例化一個OpenAiAgent:

<code>pip install openaifrom transformers import OpenAiAgentagent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")</your_api_key></code>

使用者要使用BigCode或OpenAssistant的話,得先登錄,以便能夠存取API:

<code>from huggingface_hub import loginlogin("<your_token>")</your_token></code>

然後,將智能體實例化:

<code>from transformers import HfAgent# Starcoderagent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")# StarcoderBase# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")# OpenAssistant# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")</code>

這是在使用Hugging Face目前免費提供的推理API。如果使用者有自己的推理端點,就可以替換上面的URL。

StarCoder和OpenAssistant是免費使用的,在簡單的任務上表現得很好。

然而,在处理更复杂的提示时,检查点就不成立了。如果用户面临这样的问题,可以尝试一下OpenAI模型,虽然很遗憾它不是开源的,但胜在表现不错。

单一执行方法是在使用代理的run()方法时使用的:

<code>agent.run("Draw me a picture of rivers and lakes.")</code>

它自动选择适合你要执行的任务的工具(或工具)并适当地运行它们。它可以在同一指令中执行一个或几个任务(你的指令越复杂,就越有可能失败)。

<code>agent.run("Draw me a picture of the sea then transform the picture to add an island")</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

每个run()操作都是独立的,所以你可以用不同的任务连续运行几次。

请注意,用户的智能体只是一个大语言模型,所以prompt中的小变化可能产生完全不同的结果。尽可能清楚地解释要执行的任务是很重要的。

研究人员深入地讨论了如何写出更好的prompt。

如果你想在整个执行过程中保持一个状态,或者向智能体传递非文本对象,你可以通过指定变量来做到这一点。

例如,你可以生成第一张河流和湖泊的图片,并要求模型通过以下方式更新该图片以增加一个岛屿:

<code>picture = agent.run("Generate a picture of rivers and lakes.")updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture)agent.chat("Generate a picture of rivers and lakes")</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

这里让系统生成一张河流湖泊的照片。

<code>agent.chat("Transform the picture so that there is a rock in there")</code>

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

下一步,研究人员又让系统给原图中加一个岛屿。

当用户想保持跨指令的状态时,这是一个很有趣的方法。

它更适合于实验,但往往在单条指令而不是复杂指令方面会好很多。

如果你想传递非文本类型或特定的提示,这个方法也可以接受参数。

要了解如何自己设置远程执行器工具,研究人员建议用户阅读自定义工具指南。

为了与远程工具一起运行,在run()或chat()中指定remote=True就可以了。

例如,以下命令可以在任何设备上有效地运行,不需要大量的RAM或GPU:

<code>agent.run("Draw me a picture of rivers and lakes", remote=True)</code>

对chat()来说也是一样的:

<code>agent.chat("Draw me a picture of rivers and lakes", remote=True)</code>

网友表示,Transformers Agent就像AutoGPT一样。

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

还有人表示,Transformers Agent打开了自然语言编程的大门,可以想象,未来的操作系统就是智能模型,人类通过自然语言编排任务,越来越多的非开发者可以自己实现各种计算机应用。

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

什么是工具?什么是智能体?

Transformers Agents整体的运作流程简单分为四步:

设定目标、提供工具、展示示例、下达任务。

智能体会使用链式思考推理来确定其任务,并用提供的工具输出Python代码。

如何安装和使用,官方给出了具体步骤。

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

https://www.php.cn/link/e4f67a0e4293245fba713c412fc63e28

其中,这里的「智能体」指的是,一个大型语言模型。通过提示LLM,让其访问特定的一组工具。

因为LLM非常擅长生成较小的代码样本,所以API利用了这一点优势。

你可以用抱抱脸自家的OpenAssistant、StarCoder,甚至还可以用OpenAI的模型。

提示LLM给出一个小的代码样本,并用一组工具执行一个任务。这个提示包括,给智能体的任务,以及工具的描述。

这样,「智能体」就可以找到所使用工具的文档,特别是预期的输入和输出,并可以生成相关的代码。

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

而「工具」就非常好理解,是一个单独的函数,带有名称和描述。

然后,使用这些工具的描述来提示「智能体」,作用就在于可以像智能体展示如何用工具来执行查询中的请求内容。

再之后,通过利用Python解释器在与工具一起上传的一组输入中执行代码。

如果唯一调用的函数是你自己提供的工具和print函数,那么,开发者会在可执行内容上受到限制。当然了,抱抱脸社区的工具,是比较安全的。

除此之外,HuggingFace在Transformers Agents中还集成了以下工具:

- 文档问答:给定一个图像格式的文档(PDF),回答文档的问题(Donut) 

- 文本问答:给定一个长文本和一个问题,回答文本中的问题(Flan-T5) 

- 无条件给图像加标题:(BLIP) 

- 图像问答:给定一个图像,回答关于这个图像的问题(VILT) 

- 图像分割:给定一个图像和一个提示,输出该提示的分割掩码(CLIPSeg) 

- 语音转文本:给定一个音频记录,将语音转录为文本(Whisper) 

- 文本到语音:将文本转换为语音(SpeechT5) 

- 零样本文本分类:给定一个文本和一列标签,确定该文本与哪个标签最对应(BART) 

- 文本总结:用一个或几个句子来总结一个长文本(BART) 

- 翻译:将文本翻译成一种语言(NLLB)

这些工具都内置在Transformers中,也可以手动使用,比如:

<code>from transformers import load_tooltool = load_tool("text-to-speech")audio = tool("This is a text to speech tool")</code>

此外,还有一些定制的工具集成在Transformers Agents中,其中包括文本下载器、文本到图像的扩散模型stable diffusion、图像变换instruct pix2pix stable diffusion,以及文本到视频damo-vilab。

官方给出了一个自定义工具和提示的教程:

人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品

https://www.php.cn/link/735a8b95123648555736192cd3978bc1

代码生成

如上,已经展示了如何使用Transformers Agents流程。

但是,智能体只生成代码,通过使用非常受限的Python解释器执行这些代码。

如果你希望使用在不同设置中生成的代码,可以提示智能体返回代码,对工具定义,并准确导入。

比如,根据以下步骤实现:

<code>agent.run("Draw me a picture of rivers and lakes", return_code=True)</code>

返回以下代码:

<code>from transformers import load_toolimage_generator = load_tool("huggingface-tools/text-to-image")image = image_generator(prompt="rivers and lakes")</code>

然后,你就可以修改和执行自己的工具了。

以上是人手AutoGPT!讓ChatGPT自選10萬+AI模型,HuggingFace官方出品的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
如何使用LM Studio在本地運行LLM? - 分析Vidhya如何使用LM Studio在本地運行LLM? - 分析VidhyaApr 19, 2025 am 11:38 AM

輕鬆在家運行大型語言模型:LM Studio 使用指南 近年來,軟件和硬件的進步使得在個人電腦上運行大型語言模型 (LLM) 成為可能。 LM Studio 就是一個讓這一過程變得輕鬆便捷的優秀工具。本文將深入探討如何使用 LM Studio 在本地運行 LLM,涵蓋關鍵步驟、潛在挑戰以及在本地擁有 LLM 的優勢。無論您是技術愛好者還是對最新 AI 技術感到好奇,本指南都將提供寶貴的見解和實用技巧。讓我們開始吧! 概述 了解在本地運行 LLM 的基本要求。 在您的電腦上設置 LM Studi

蓋伊·佩里(Guy Peri)通過數據轉換幫助麥考密克的未來蓋伊·佩里(Guy Peri)通過數據轉換幫助麥考密克的未來Apr 19, 2025 am 11:35 AM

蓋伊·佩里(Guy Peri)是麥考密克(McCormick)的首席信息和數字官。儘管他的角色僅七個月,但Peri正在迅速促進公司數字能力的全面轉變。他的職業生涯專注於數據和分析信息

迅速工程中的情感鍊是什麼? - 分析Vidhya迅速工程中的情感鍊是什麼? - 分析VidhyaApr 19, 2025 am 11:33 AM

介紹 人工智能(AI)不僅要理解單詞,而且要理解情感,從而以人的觸感做出反應。 這種複雜的互動對於AI和自然語言處理的快速前進的領域至關重要。 Th

12個最佳數據科學工作流程的AI工具-Analytics Vidhya12個最佳數據科學工作流程的AI工具-Analytics VidhyaApr 19, 2025 am 11:31 AM

介紹 在當今以數據為中心的世界中,利用先進的AI技術對於尋求競爭優勢和提高效率的企業至關重要。 一系列強大的工具使數據科學家,分析師和開發人員都能構建,Depl

AV字節:OpenAI的GPT-4O Mini和其他AI創新AV字節:OpenAI的GPT-4O Mini和其他AI創新Apr 19, 2025 am 11:30 AM

本週的AI景觀爆炸了,來自Openai,Mistral AI,Nvidia,Deepseek和Hugging Face等行業巨頭的開創性發行。 這些新型號有望提高功率,負擔能力和可訪問性,這在TR的進步中推動了

報告發現,困惑的Android應用程序有安全缺陷。報告發現,困惑的Android應用程序有安全缺陷。Apr 19, 2025 am 11:24 AM

但是,該公司的Android應用不僅提供搜索功能,而且還充當AI助手,並充滿了許多安全問題,可以將其用戶暴露於數據盜用,帳戶收購和惡意攻擊中

每個人都擅長使用AI:關於氛圍編碼的想法每個人都擅長使用AI:關於氛圍編碼的想法Apr 19, 2025 am 11:17 AM

您可以查看會議和貿易展覽中正在發生的事情。您可以詢問工程師在做什麼,或諮詢首席執行官。 您看的任何地方,事情都以驚人的速度發生變化。 工程師和非工程師 有什麼區別

火箭發射模擬和分析使用Rocketpy -Analytics Vidhya火箭發射模擬和分析使用Rocketpy -Analytics VidhyaApr 19, 2025 am 11:12 AM

模擬火箭發射的火箭發射:綜合指南 本文指導您使用強大的Python庫Rocketpy模擬高功率火箭發射。 我們將介紹從定義火箭組件到分析模擬的所有內容

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境