首頁  >  文章  >  後端開發  >  Python記憶體管理器怎麼實現池化技術

Python記憶體管理器怎麼實現池化技術

WBOY
WBOY轉載
2023-05-22 19:03:021195瀏覽

前言

Python 中一切皆對象,這些對象的記憶體都是在運行時動態地在堆中進行分配的,就連 Python 虛擬機使用的棧也是在堆上模擬的。既然一切皆對象,那麼在Python 程式運行過程中對象的創建和釋放就很頻繁了,而每次都用malloc() 和free() 去向操作系統申請內存或釋放內存就會對性能造成影響,畢竟這些函數最終都要發生系統呼叫引起上下文的切換。

其實核心就是池化技術,一次向作業系統申請一批連續的記憶體空間,每次需要創建物件的時候就在這批空間內找到空閒的記憶體區塊進行分配,物件釋放的時候就將對應的記憶體區塊標記為空閒,這樣就避免了每次都向作業系統申請和釋放內存,只要程式中總的物件記憶體空間穩定,Python 向作業系統申請和釋放記憶體的頻率就會很低。這種方案是不是很熟悉,資料庫連線池也是類似的想法。一般後端應用程式也是提前跟資料庫建立多個連接,每次執行SQL 的時候就從中找一個可用的連接與資料庫進行交互,SQL 完成的時候就會將連接交還給連接池,如果某個連接長時間未被使用,連接池就會將其釋放掉。本質上,這些都是用空間換時間,消耗一些不太太大的內存,降低諸如內存申請和 TCP 建立連接等耗時操作的頻率,提高程序整體的運行速度。

記憶體層次結構

Python 的記憶體管理器將記憶體分為了三個層次,由大到小分別是 arena、pool 和 block。 arena 是記憶體管理器直接呼叫 malloc() 或 calloc() 向作業系統申請的一大塊內存,Python 中物件的建立和釋放都是在 arena 中進行分配和回收。在 arena 內部又分成了多個 pool,每個 pool 內又分成了多個大小相等的 block,每次分配記憶體的時候都是從某個 pool 中選擇一塊可用的 block 返回。不同的 pool 可以有不同大小的 block,但是同一 pool 內的 block 大小必須相等。

Python記憶體管理器怎麼實現池化技術

arena、pool 和block 的大小在32 位元機器和64 位元機器上有所不同,block 的大小必須是ALIGNMENT 的倍數,最大為512 位元組,下表列出了不同機器上各種記憶體的大小。

# #arena size256 KB1 MBpool sizeALIGNMENT

以64 位元機器為例,所有可能的block 的大小為16、32、48 … 496、512,每個大小都對應一個分級(size class),從小到大依序為0、1、2 … 30、31。在分配記憶體時,需要尋找一個空閒 block,其大小不小於請求大小,並且是最小的。對 block 的大小進行分級是為了適應不同大小的記憶體請求,減少記憶體碎片的產生,並提高 arena 的利用率。

記憶體管理邏輯

了解了arena、pool 和block 的概念後就可以描述記憶體分配的邏輯了,假如需要的記憶體大小為n 位元組

  • 如果n > 512,回退為malloc(),因為block 最大為512 位元組

  • 否則計算出不小於n 的最小的block size,例如n=105,在64 位元機器上最小的block size 為112

  • #從大小與第二個區塊相符的記憶體池中分配一個區塊。如果沒有可用的pool 就從可用的arena 中分配一個pool,如果沒有可用的arena 就用malloc() 向作業系統申請一塊新的arena

##釋放記憶體的邏輯如下

  • 先判斷要釋放的記憶體是不是由Python 記憶體管理器分配的,如果不是直接回傳

  • ##找到要釋放的記憶體對應的block 和pool,並將block 歸還給pool,留給下次分配使用
  • 如果釋放的block 所在的arena 中除了自己之外其他的都是空閒的,那麼在block 歸還之後整個arena 都是空閒的,就可以將arena 用free() 釋放掉還給操作系統
  • Python 中的物件一般都不大,並且生命週期很短,所以arena 一旦申請之後,對象的分配和釋放大部分情況下都是在arena 中進行的,提高了效率。
上文已經將Python 記憶體管理器的核心邏輯描述清楚了,只不過有一些細節的問題還沒解決,例如記憶體分配的時候怎麼根據block size 找到對應的pool,這些pool 之間怎麼關聯起來的,記憶體釋放的時候又是怎麼判斷要釋放的記憶體是不是Python 記憶體管理器分配的,等等。以下結合原始碼將記憶體分配和釋放的邏輯詳細展開。


先介紹 arena 和 pool 的記憶體佈局和對應的資料結構,然後再具體分析 pymalloc_alloc() 和 pymalloc_free() 的邏輯,以 64 位元機器為例介紹。

記憶體佈局及對應的資料結構

Arena

Python記憶體管理器怎麼實現池化技術#arena 為1 MB,pool 為16 KB,pool 在arena 是相鄰的,一個arena 最多有1 MB / 16 KB = 64 個pool。 Python 記憶體管理器會將arena 中第一個pool 的首地址跟POOL_SIZE 對齊,這樣每個pool 的首地址都是POOL_SIZE 的整數倍,給定任意內存地址都可以很方便的計算出其所在pool 的首位址,這個特性在記憶體釋放的時候會用到。 POOL_SIZE 在 32 位元機器上是 4 KB,在 64 位元機器上是 16 KB,這樣做還有另一個好處就是讓每個 pool 正好落在一個或多個實體頁中,提高了訪存效率。上圖的灰色記憶體區塊就是為了​​對齊而丟棄掉的,如果 malloc() 分配的記憶體首位址剛好對齊了,那麼 pool 的數量就是 64,否則就是 63。當然 arena 不是一開始就將全部的 pool 都劃分出來,而是在沒有可用的 pool 的時候才會去新劃分一個,當所有的 pool 全部劃分之後佈局如上圖所示。

每個arena 都由結構體struct arena_object 來表示,但不是所有struct arena_object 都有對應的arena,因為arena 釋放之後對應的struct arena_object 還保留著,這些沒有對應arena 的struct arena_object 存放在單鍊錶unused_arena_objects 中,下次分配arena 時可以拿來使用。如果 struct arena_object 有對應的 arena,並且 arena 中有可以分配的 pool,那麼 struct arena_object 會存放在 usable_arenas 這個雙向鍊錶中,同時,所有的 struct arena_object 無論有沒有對應的 arena 都存在數組 arenas 中。 usable_arenas 中arena 是按照其包含的空閒pool 的數量從小到大排序的,這麼排序是為了讓已經使用了更多內存的arena 在下次分配pool 的時候優先被使用,那麼在釋放內存的時候排在後面的那些擁有更多空閒內存的arena 就有更大可能變成完全空閒狀態,從而被釋放掉將其內存空間歸還給操作系統,降低整體的內存消耗。

struct arena_object 的結構及各字段意義如下

struct arena_object {
    uintptr_t address; // 指向 arena 的起始地址,如果当前 arena_object 没有对应的 arena 内存则 address = 0
    block* pool_address; // pool 需要初始化之后才能使用,pool_address 指向的地址可以用来初始化一个 pool 用于分配
    int nfreepools; // arena 中目前可以用来分配的 pool 的数量
    uint ntotalpools; // arena 中 pool 的总数量,64 或 63
    struct pool_header* freepools; // arena 中可以分配的 pool 构成一个单链表,freepools 指针是单链表的第一个节点
    struct arena_object* nextarena; // 在 usable_arenas 或 unused_arena_objects 指向下一个节点
    struct arena_object* prevarena; // 在 usable_arenas 中指向上一个节点
}

Pool

pool 的内部等分成多个大小相等的 block,与 arena 一样,也有一个数据结构 struct pool_header 用来表示 pool。与 arena 不同的是,struct pool_header 位于 pool 的内部,在最开始的一段内存中,紧接之后的是第一个 block,为了让每个 block 的地址都能对齐机器访问内存的步长,可能需要在 struct pool_header 和第一个 block 之间做一些 padding,图中灰色部分所示。这部分 padding 不一定存在,在 64 位机器上 sizeof(struct pool_header) 为 48 字节,本来就已经对齐了,后面就直接跟第一个 block,中间没有 padding。即使如此,pool 最后的一小块内存也可能用不上,上图中下面的灰色部分所示,因为每个 pool 中 block 大小是相等的,假设 block 为 64 字节,一个 pool 中可以分出 255 个 block,前面 48 字节存储 struct pool_header,后面 16 字节用不上,当然如果 block 大小为 48 字节或 16 字节那么整个 pool 就会被完全利用上。同 arena 一样,pool 一开始不是把所有的 block 全部划分出来,而是在没有可用 block 的时候才回去新划分一个,在所有的 block 全部划分之后 pool 的布局如上图所示。

接下来看看 struct pool_header 的结构

struct pool_header {
    union { block *_padding;
            uint count; } ref; // 当前 pool 中已经使用的 block 数量,共用体中只有 count 字段有意义,_padding 是为了让 ref 字段占 8 个字节,这个特性在 usedpools 初始化的时候有用
    block *freeblock; // pool 中可用来进行分配的 block 单链表的头指针
    struct pool_header *nextpool; // 在 arena_object.freepools 或 usedpools 中指向下一个 pool
    struct pool_header *prevpool; // 在 usedpools 中指向上一个 pool
    uint arenaindex; // pool 所在 arena 在 arenas 数组中的索引
    uint szidx; // pool 中 block 大小的分级
    uint nextoffset; // 需要新的 block 可以从 nextoffset 处分配
    uint maxnextoffset; // nextoffset 最大有效值
};

typedef struct pool_header *poolp;

一旦被分配,每个池子都会处于三种状态之一:满、空或使用中。

  • full 所有的 block 都分配了

  • empty 所有的 block 都是空闲的,都可用于分配,所有处于 empty 状态的 pool 都在其所在 arena_object 的 freepools 字段表示的单链表中

  • used 有已分配的 block,也有空闲的 block,所有处于 used 状态的 pool 都在全局数组 usedpools 中某个元素指向的双向循环链表中

usedpools 是内存分配最常访问的数据结构,分配内存时先计算申请的内存大小对应的 block 分级 i,usedpools[i+i] 指向的就是属于分级 i 的所有处于 used 状态的 pool 构成的双向循环链表的头结点,如果链表不空就从头结点中选择一个空闲 block 分配。下面我们来探究一下为什么 usedpools[i+i] 指向的链表,属于分级 i 的池。

usedpools 的原始定义如下

#define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x)   PTA(x), PTA(x)
static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { 
    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7),
    …
}

将宏定义稍微展开一下

static poolp usedpools[64] = { 
    PTA(0), PTA(0), PTA(1), PTA(1), PTA(2), PTA(2), PTA(3), PTA(3),
    PTA(4), PTA(4), PTA(5), PTA(5), PTA(6), PTA(6), PTA(7), PTA(7),
    …
}

PTA(x) 表示数组 usedpools 中第 2*x 个元素的地址减去两个指针的大小也就是 16 字节(64 位机器),假设数组 usedpools 首地址为 1000,则数组初始化的值如下图所示

Python記憶體管理器怎麼實現池化技術

假设 i = 2,则 usedpools[i+i] = usedpools[4] = 1016,数组元素的类型为 poolp 也就是 struct pool_header *,如果认为 1016 存储的是 struct pool_header,那么 usedpools[4] 和 usedpools[5] 的值也就是地址 1032 和 1040 存储的值,分别是字段 nextpool 和 prevpool 的值,可以得到

usedpools[4]->prevpool = usedpools[4]->nextpool = usedpools[4] = 1016

usedpools[4] 用指针 p 表示就有 p->prevpool = p->nextpool = p,那么 p 就是双向循环链表的哨兵节点,初始化的时候哨兵节点的前后指针都指向自己,表示当前链表为空。

虽然 usedpools 的定义非常绕,但是这样定义有个好处就是省去了哨兵节点的数据域,只保留前后指针,可以说是将节省内存做到了极致。

接下来我们将看一下 Python 3.10.4 源码中内存分配和释放逻辑的实现。另外说明一下,源码中有比本文详细的多注释说明,有兴趣的读者可以直接看源码,本文为了代码不至于过长会对代码做简化处理并且省略掉了大部分注释。

内存分配

内存分配的主逻辑在函数 pymalloc_alloc 中,简化后代码如下

static inline void*
pymalloc_alloc(void *ctx, size_t nbytes)
{  
    // 计算请求的内存大小 ntybes 所对应的内存分级 size
    uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
    // 找到属于内存分级 size 的 pool 所在的双向循环链表的头指针 pool
    poolp pool = usedpools[size + size];
    block *bp;
    // pool != pool->nextpool,说明 pool 不是哨兵节点,是真正的 pool
    if (LIKELY(pool != pool->nextpool)) {
        ++pool->ref.count;
        // 将 pool->freeblock 指向的 block 分配给 bp,因为 pool 是从 usedpools 中取的,
        // 根据 usedpools 的定义,pool->freeblock 指向的一定是空闲的 block
        bp = pool->freeblock;
        // 如果将 bp 分配之后 pool->freeblock 为空,需要从 pool 中划分一个空闲 block
        // 到 pool->freeblock 链表中留下次分配使用
        if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
            pymalloc_pool_extend(pool, size);
        }
    }
    // 如果没有对应内存分级的可用 pool,就从 arena 中分配一个 pool 之后再从中分配 block
    else {
        bp = allocate_from_new_pool(size);
    }
    
    return (void *)bp;
}

主体逻辑还是比较清晰的,代码中注释都做了说明,不过还是要解释一下下面的这个判断语句。

if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL))

前文已经介绍过 pool->freeblock 表示 pool 中可用来进行分配的 block 所在单链表的头指针,类型为 block*,但是 block 的定义为 typedef uint8_t block;,并不是一个结构体,所以没有指针域,那么是怎么实现单链表的呢。考虑到 pool->freeblock 的实际含义,只需要把空闲 block 用单链表串起来就可以了,不需要数据域,Python 内存管理器把空闲 block 内存的起始 8 字节(64 位机器)当做虚拟的 next 指针,指向下一个空闲 block,具体是通过 *(block **)bp 实现的。首先用 (block **) 将 bp 转换成 block 的二级指针,然后用 * 解引用,将 bp 指向内存的首地址内容转换成 (block *) 类型,表示下一个 block 的地址,不得不说,C 语言真的是可以为所欲为。再来看一下上面判断语句,首先将 bp 的下一个空闲 block 地址赋值给 pool->freeblock,如果是 NULL 证明没有更多空闲 block,需要调用 pymalloc_pool_extend 扩充。

pymalloc_pool_extend 的源码简化后如下

static void
pymalloc_pool_extend(poolp pool, uint size)
{
    // 如果 pool 还有更多空间,就划分一个空闲 block 放到 pool->freeblock 中
    if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
        pool->freeblock = (block*)pool + pool->nextoffset;
        pool->nextoffset += INDEX2SIZE(size);
        // pool->freeblock 只有一个 block,需要将虚拟的 next 指针置为 NULL
        *(block **)(pool->freeblock) = NULL;
        return;
    }

    // 如果没有更多空间,需要将 pool 从 usedpools[size+size] 中移除
    poolp next;
    next = pool->nextpool;
    pool = pool->prevpool;
    next->prevpool = pool;
    pool->nextpool = next;

}

过程也很清晰,如果有更多空间就划分一个 block 到 pool->freeblock,如果没有更多空间就将 pool 从 usedpools[size+size] 中移除。pool->nextoffset 指向的是 pool 中从未被使用过内存的地址,分配 block 时候优先使用 pool->nextoffset 之前的空闲 block,这些空闲的 block 一般是之前分配过后来又被释放到 pool->freeblock 中的。这种复用空闲 block 的方式让 pool 更加经久耐用,如果每次都从 pool->nextoffset 划分一个新的 block,pool 很快就会被消耗完,变成 full 状态。

在 pymalloc_alloc 中如果没有可用 pool 就会调用 allocate_from_new_pool 先分配一个新的 pool,再从新的 pool 中分配 block,其源码简化后如下

static void*
allocate_from_new_pool(uint size)
{
    // 没有可用的 arena 就新申请一个
    if (UNLIKELY(usable_arenas == NULL)) {
        usable_arenas = new_arena();
        if (usable_arenas == NULL) {
            return NULL;
        }
        // 将新的 arena 作为 usable_arenas 链表的头结点
        usable_arenas->nextarena = usable_arenas->prevarena = NULL;
        nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
    }

    // 如果有可用 arena 就从中分配一个空闲 pool,并调整当前 arena 在 usable_arenas 中的位置,使 usable_arenas 按空闲 pool 的数量从小到大排序
    if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
        nfp2lasta[usable_arenas->nfreepools] = NULL;
    }
    if (usable_arenas->nfreepools > 1) {
        nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
    }

    // 执行到这里,usable_arenas->freepools 就是当前需要的可用 pool
    poolp pool = usable_arenas->freepools;
    // 更新 freepools 链表和 nfreepools 计数
    if (LIKELY(pool != NULL)) {
        usable_arenas->freepools = pool->nextpool;
        usable_arenas->nfreepools--;
        // 分配之后,如果 arena 中没有空闲 pool,需要更新 usable_arenas 链表
        if (UNLIKELY(usable_arenas->nfreepools == 0)) {
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
            }
        }
    }
    // 如果当前 arena 中没有可用 pool,就重新划分一个
    else {
        pool = (poolp)usable_arenas->pool_address;
        pool->arenaindex = (uint)(usable_arenas - arenas);
        pool->szidx = DUMMY_SIZE_IDX;
        usable_arenas->pool_address += POOL_SIZE;
        --usable_arenas->nfreepools;
        // 划分之后,如果 arena 中没有空闲 pool,需要更新 usable_arenas 链表
        if (usable_arenas->nfreepools == 0) {
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
            }
        }
    }

    // 执行到这里,变量 pool 就是找到的可用 pool,将其置为链表 usedpools[size+size] 的头节点
    block *bp;
    poolp next = usedpools[size + size];
    pool->nextpool = next;
    pool->prevpool = next;
    next->nextpool = pool;
    next->prevpool = pool;
    pool->ref.count = 1;
    // 如果 pool 的内存分级跟请求的一致,直接从中分配一个 block 返回
    // 证明这个 pool 之前被使用之后又释放到 freepools 中了
    // 并且当时使用的时候内存分级也是 size
    if (pool->szidx == size) {
        bp = pool->freeblock;
        pool->freeblock = *(block **)bp;
        return bp;
    }
    
    // 执行到这里,说明 pool 是 arena 新划分的,需要对其进行初始化
    // 然后分配 block 返回
    pool->szidx = size;
    size = INDEX2SIZE(size);
    bp = (block *)pool + POOL_OVERHEAD;
    pool->nextoffset = POOL_OVERHEAD + (size << 1);
    pool->maxnextoffset = POOL_SIZE - size;
    pool->freeblock = bp + size;
    *(block **)(pool->freeblock) = NULL;
    return bp;
}

这段代码比较长,归纳一下做了下面 3 件事

  • 如果没有可用的 arena 就重新申请一个

  • 从可用的 arena 中分配一个新的 pool

  • 从分配的 pool 中分配空闲的 block

首先是 arena 的申请,申请流程在函数 new_arena() 中,申请完之后将对应的 arena_object 置为 双线链表 usable_arenas 的头结点,并且前后指针都置为 NULL,因为只有在没有可用 arena 的时候才回去调用 new_arena(),所以申请之后系统里只有一个可用 arena。另外还有一个操作如下

nfp2lasta[usable_arenas->nfreepools] = usable_arenas;

nfp2lasta 是一个数组,nfp2lasta[i] 表示的是在 usable_arenas 链表中,空闲 pool 的数量为 i 的所有 arena 中最后一个 arena。前文已经说明 usable_arenas 是按照 arena 中空闲 pool 的数量从小到大排序的,为了维护 usable_arenas 的有序性,在插入或删除一个 arena 的时候需要找到对应的位置,时间复杂度为 O(N),为了避免线性搜索,Python 3.8 引入了 nfp2lasta,将时间复杂度降为常量级别。

有了可用的 arena 就可以从中分配 pool 了,分配 pool 之后 arena->nfreepools 就会减少,需要更新 nfp2lasta,由于使用的是链表 usable_arenas 的头结点,并且是减少其空闲 pool 数量,所以整个链表依然有序。接下来优先复用 arena->freepools 中空闲的 pool,如果没有就从 arena->pool_address 指向的未使用内存处新划分一个 pool,这点跟 pool 中复用空闲 block 的策略是一样的。

分配了可用的 pool,先将其置为链表 usedpools[size+size] 的头结点,然后从中分配 block,如果 pool 不是从新分配的 arena 获得的,那么 pool 就是之前初始化使用之后释放掉的,如果 pool 的分级恰好就是请求的内存分级那么直接从 pool->freeblock 分配 block,否则需要将 pool 重新初始化,当然如果 pool 来自新分配的 arena 也要进行初始化。初始化的时候,先将第一个 block 的地址进行内存对齐,然后将 pool->freeblock 指向第 2 个 block 留下次分配使用(第 1 个 block 本次要返回),将 pool->nextoffset 指向第 3 个 block,在下次划分新的 block 时使用。

内存释放

内存释放的主逻辑在 pymalloc_free 函数中,代码简化后如下

static inline int
pymalloc_free(void *ctx, void *p)
{
    // 假设 p 是 pool 分配的,计算 p 所在 pool 的首地址
    poolp pool = POOL_ADDR(p);
    // 如果 p 不是内存管理器分配的直接返回
    if (UNLIKELY(!address_in_range(p, pool))) {
        return 0;
    }
    
    // 将 p 指向的 block 归还给 pool,置为 pool->freeblock 的头结点
    block *lastfree = pool->freeblock;
    *(block **)p = lastfree;
    pool->freeblock = (block *)p;
    pool->ref.count--;
    // 如果 pool 原来处于 full 状态,现在有一个空闲的 block 就变成了 used 状态
    // 需要将其作为头结点插到 usedpools[size+size] 中
    if (UNLIKELY(lastfree == NULL)) {
        insert_to_usedpool(pool);
        return 1;
    }

    if (LIKELY(pool->ref.count != 0)) {
        return 1;
    }

    // 如果 block 释放之后,其所在 pool 所有的 block 都是空闲状态,
    // 将 pool 从 usedpools[size+size] 中移到 arena->freepools 
    insert_to_freepool(pool);
    return 1;
}

pymalloc_free 函数的逻辑也很清晰

  • 计算地址 p 所在 pool 首地址,前文介绍过每个 pool 首地址都是 POOL_SIZE 的整数倍,所以将 p 的低位置 0 就得到了 pool 的地址

  • address_in_range(p, pool) 判断 p 是否是由 pool 分配的,如果不是直接返回

  • 将 p 指向的 block 释放掉,被 pool->freeblock 回收

  • 如果 pool 开始为 full 状态,那么回收 block 之后就是 used 状态,调用函数 insert_to_usedpool(pool) 将其置为 usedpools[size+size] 的头结点。这里的策略跟 usable_arenas 一样,优先使用快满的 pool,让比较空闲的 pool 有较高的概率被释放掉。

  • 如果 pool 回收 block 之后变成 empty 状态,需要调用 insert_to_freepool(pool) 将 pool 也释放掉

address_in_range 函数如下

address_in_range(void *p, poolp pool)
{
    uint arenaindex = *((volatile uint *)&pool->arenaindex);
    return arenaindex < maxarenas &&
        (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
        arenas[arenaindex].address != 0;
}

这段逻辑能在常量时间内判断出 p 是否由 pool 分配,但是存在一个可能出问题的地方,毕竟这里的 pool 是在假设 p 是由 pool 分配的前提下计算出来的,有可能 pool 指向的地址可能还没被初始化,pool->arenaindex 操作可能会出错。Python 3.10 在这个 commit 中利用基数树来判断任意一个地址 p 是不是由内存管理器分配的,避免了可能出现的内存访问错误。

insert_to_usedpool 函数中只是简单的指针操作就不展开了,insert_to_freepool 稍微复杂一点,下面再展开一下

static void
insert_to_freepool(poolp pool)
{
    poolp next = pool->nextpool;
    poolp prev = pool->prevpool;
    next->prevpool = prev;
    prev->nextpool = next;
    // 将 pool 置为 ao->freepools 头结点
    struct arena_object *ao = &arenas[pool->arenaindex];
    pool->nextpool = ao->freepools;
    ao->freepools = pool;
    uint nf = ao->nfreepools;
    struct arena_object* lastnf = nfp2lasta[nf];
    // 如果 arena 是排在最后的包含 nf 个空闲 pool 的 arena,
    // 需要将 nfp2lasta[nf] 置为 arena 的前驱结点或 NULL
    if (lastnf == ao) { /* it is the rightmost */
        struct arena_object* p = ao->prevarena;
        nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
    }
    ao->nfreepools = ++nf;

    // 如果 pool 释放后 arena 变成完全空闲状态,并且系统中还有其他可用 arena,
    // 需要将 arena 从 usable_arenas 中移除并调用 free() 函数将其释放归还给操作系统
    if (nf == ao->ntotalpools && ao->nextarena != NULL) {
        if (ao->prevarena == NULL) {
            usable_arenas = ao->nextarena;
        }
        else {
            ao->prevarena->nextarena = ao->nextarena;
        }
        if (ao->nextarena != NULL) {
            ao->nextarena->prevarena = ao->prevarena;
        }
        ao->nextarena = unused_arena_objects;
        unused_arena_objects = ao;
        arena_map_mark_used(ao->address, 0);
        _PyObject_Arena.free(_PyObject_Arena.ctx, (void *)ao->address, ARENA_SIZE);
        ao->address = 0;          
        --narenas_currently_allocated;
        return;
    }
    // 如果 pool 释放后 arena 从满变成可用,需要将其置为 usable_arenas 头结点,
    // 因为 arena 空闲 pool 数量为 1,作为头结点不会破坏 usable_arenas 有序性
    if (nf == 1) {
        ao->nextarena = usable_arenas;
        ao->prevarena = NULL;
        if (usable_arenas)
            usable_arenas->prevarena = ao;
        usable_arenas = ao;
        if (nfp2lasta[1] == NULL) {
            nfp2lasta[1] = ao;
        }
        return;
    }

    if (nfp2lasta[nf] == NULL) {
        nfp2lasta[nf] = ao;
    } 
    // 如果 arena 本来就是包含 lastnf 个空闲 pool 的最后一个,现在空闲 pool 数量加 1,
    // 整个 usable_arenas 还是有序的
    if (ao == lastnf) {
        return;
    }

    // arena->nfreepools 的增加导致 usable_arenas 失序,
    // 重新调整 arena 在 usable_arenas 的位置
    if (ao->prevarena != NULL) {
        ao->prevarena->nextarena = ao->nextarena;
    }
    else {
        usable_arenas = ao->nextarena;
    }
    ao->nextarena->prevarena = ao->prevarena;
    ao->prevarena = lastnf;
    ao->nextarena = lastnf->nextarena;
    if (ao->nextarena != NULL) {
        ao->nextarena->prevarena = ao;
    }
    lastnf->nextarena = ao;
}

首先将这个空闲的 pool 置为 ao->freepools 的头结点,这样可以保证最后释放的 pool 会最先被使用,提高访存效率,因为之前释放的 pool 可能被置换出了物理内存。然后根据不同情况更新 nfp2lasta,便于后续维护 usable_arenas 的有序性。接着根据 pool 释放前后其所在 arena 状态的变化做不同操作。

  • 如果 arena 由可用状态变成空闲状态,并且系统中还有其他可用 arena,就调用 free() 将 arena 释放掉归还给操作系统。不释放唯一空闲 arena,以避免内存抖动。

  • 如果 arena 由不可用状态(所有 pool 都分配了)变成可用状态,将其置为 usable_arenas 的头结点。

  • 如果 pool 释放前后 arena 都是可用状态,也就是一直都在 usable_arenas 链表中,如果其可用 pool 数量的增加导致 usable_arenas 链表失序,需要移动 arena 到合适位置来保持 usable_arenas 的有序性。

  #32 位元機器 #64 位元機器
##4 KB 16 KB
8 B 16 B

以上是Python記憶體管理器怎麼實現池化技術的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:yisu.com。如有侵權,請聯絡admin@php.cn刪除