一、迭代器(foreach)
1、可迭代的物件
內建有__iter__
方法的都叫可迭代的物件。
Python內建str、list、tuple、dict、set、file都是可迭代物件。
x = 1.__iter__ # SyntaxError: invalid syntax # 以下都是可迭代的对象 name = 'nick'.__iter__ print(type(name)) # 'method-wrapper'>
2、迭代器物件
執行可迭代物件的__iter__
方法,拿到的回傳值就是迭代器物件。
只有字串和列表都是依賴索引取值的,而其他的可迭代物件都是無法依賴索引取值的,只能使用迭代器物件。
內建有
__iter__
方法,執行方法會拿到迭代器本身。內建
__next__
方法,執行方法會拿到迭代器物件中的一個值。
s = 'hello' iter_s = s.__iter__() print(type(iter_s)) # 'str_iterator'> iter_s为迭代器对象 while True: try: print(iter_s.__next__()) except StopIteration: break #hello
3、迭代器有兩個基本的方法:iter() 和 next()。
s = 'hello' iter_s = iter(s) # 创建迭代器对象 print(type(iter_s)) # iter_s为迭代器对象 while True: try: print(next(iter_s)) # 输出迭代器的下一个元素 except StopIteration: break # hello
4、for迭代器循環
可迭代物件可以直接使用常規for語句進行遍歷
for循環稱為迭代器循環,in後面必須是可迭代的對象。
#str name = 'nick' for x in name: print(x) #list for x in [None, 3, 4.5, "foo", lambda: "moo", object, object()]: print("{0} ({1})".format(x, type(x))) #dict d = { '1': 'tasty', '2': 'the best', '3 sprouts': 'evil', '4': 'pretty good' } for sKey in d: print("{0} are {1}".format(sKey, d[sKey])) #file f = open('32.txt', 'r', encoding='utf-8') for x in f: print(x) f.close()
5、實作迭代器(__next__和__iter__)
在類別中實作__iter__() 和__next__() 兩個方法後,即可使其作為迭代器來使用。
__iter__() 方法傳回一個特殊的迭代器對象, 這個迭代器物件實現了 __next__() 方法並透過 StopIteration 異常標識迭代的完成。
__next__() 方法會傳回下一個迭代器物件。
StopIteration 異常用於標識迭代的完成,防止無限循環的情況,在__next__() 方法中我們可以設定在完成指定循環次數後觸發StopIteration 異常來結束迭代。
建立一個回傳數字的迭代器,初始值為1,逐步遞增1,在20 次迭代後停止執行:
class MyNumbers: def __iter__(self): self.a = 1 return self def __next__(self): if self.a <= 20: x = self.a self.a += 1 return x else: raise StopIteration myclass = MyNumbers() myiter = iter(myclass) for x in myiter: print(x)
1、類比range
class Range: def __init__(self, n, stop, step): self.n = n self.stop = stop self.step = step def __next__(self): if self.n >= self.stop: raise StopIteration x = self.n self.n += self.step return x def __iter__(self): return self for i in Range(1, 7, 3): print(i) #1 #4
2、斐波那契數列
class Fib: def __init__(self): self._a = 0 self._b = 1 def __iter__(self): return self def __next__(self): self._a, self._b = self._b, self._a + self._b return self._a f1 = Fib() for i in f1: if i > 100: break print('%s ' % i, end='') # 1 1 2 3 5 8 13 21 34 55 89
二、生成器
1、yield
在Python 中,使用了yield 的函數稱為生成器(generator)。
生成器是一種特殊的函數,它會傳回一個迭代器,僅可用於迭代操作。換言之,生成器就是一種迭代器。
在呼叫生成器運行的過程中,每次遇到yield 時函數會暫停並保存當前所有的運行信息,返回yield 的值, 並在下一次執行next() 方法時從當前位置繼續運行。
呼叫一個生成器函數,傳回的是一個迭代器物件。
yield後面可以加多個數值(可以是任意型別),但傳回的值是元組類型的。
提供自訂迭代器的方式
yield可以暫停函數,並提供目前的回傳值
import sys def fibonacci(n): # 函数 - 斐波那契 a, b, counter = 0, 1, 0 while True: if counter > n: return yield a a, b = b, a + b counter += 1 f = fibonacci(10) #f 是一个生成器 print(type(f)) # 'generator'> while True: try: print(next(f), end=" ") except StopIteration: sys.exit()
yield和return:
相同點:兩者都是在函數內部使用,都可以傳回值,且傳回值沒有型別和數位的限制
不同點:return只能傳回一次值;yield可以傳回多次值
2、自訂range()方法
def my_range(start, stop, step=1): while start < stop: yield start start += 1 g = my_range(0, 3) print(f"list(g): {list(g)}")
複雜版本:
def range(*args, **kwargs): if not kwargs: if len(args) == 1: count = 0 while count < args[0]: yield count count += 1 if len(args) == 2: start, stop = args while start < stop: yield start start += 1 if len(args) == 3: start, stop, step = args while start < stop: yield start start += step else: step = 1 if len(args) == 1: start = args[0] if len(args) == 2: start, stop = args for k, v in kwargs.items(): if k not in ['start', 'step', 'stop']: raise ('参数名错误') if k == 'start': start = v elif k == 'stop': stop = v elif k == 'step': step = v while start < stop: yield start start += step for i in range(3): print(i) # 0,1,2 for i in range(99, 101): print(i) # 99,100 for i in range(1, 10, 3): print(i) # 1,4,7 for i in range(1, step=2, stop=5): print(i) # 1,3 for i in range(1, 10, step=2): print(i) # 1,3,5,7,9
3、生成器表達式(i.for .in)
把列表推導式的[]換成()就是生成器表達式式。
優點:比起列表推導式,可以省內存,一次只產生一個值在內存中
t = (i for i in range(10)) print(t) # <generator object at 0x00000000026907B0> print(next(t)) # 0 print(next(t)) # 1
舉例:
with open('32.txt', 'r', encoding='utf8') as f: nums = [len(line) for line in f] # 列表推导式相当于直接给你一筐蛋 print(max(nums)) # 2 with open('32.txt', 'r', encoding='utf8') as f: nums = (len(line) for line in f) # 生成器表达式相当于给你一只老母鸡。 print(max(nums)) # ValueError: I/O operation on closed file.
以上是Python中迭代器與生成器怎麼使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1
好用且免費的程式碼編輯器

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器