隨著資訊時代的到來,數據已經成為人類生產和生活中不可或缺的資源。資料探勘和機器學習作為資料分析的重要手段,已經受到越來越廣泛的關注和應用。 PHP作為一種廣泛應用於Web開發的伺服器端腳本語言,也逐漸開始在資料探勘和機器學習領域嶄露頭角。本篇文章將介紹如何使用PHP進行資料探勘和機器學習。
一、資料探勘
資料探勘是從大量資料中發掘潛在的、先前未知的、有用的資訊的過程。一般包括資料預處理、特徵選擇、建立模型和模型評估等步驟。以下介紹如何使用PHP進行資料探勘。
- 資料預處理
在進行資料探勘之前,需要對原始資料進行清洗和預處理。常見的資料預處理方法包括資料清洗、資料轉換和資料歸一化等。
在PHP中,可以使用一些第三方函式庫如php-ml或phpdataobjects進行資料預處理。這些函式庫提供了一系列的資料預處理函數,如資料清洗、缺失值處理、標準化和歸一化等。例如,可以使用以下程式碼對資料進行標準化:
use PhpmlPreprocessingStandardScaler; $scaler = new StandardScaler(); $scaler->fit($samples); // 计算数据的标准偏差和均值 $scaler->transform($samples); // 对数据进行标准化
- 特徵選擇
特徵選擇是從原始的特徵集中選擇一些最具代表性的特徵,以達到降低資料維度、提高模型準確度、加快模型訓練速度等目的。
在PHP中,特徵選擇可以透過特徵工程函式庫php-ml來實現。 php-ml提供了一些特徵選擇函數,如變異數閾值法、相關性閾值法、互資訊法等。例如,可以使用以下程式碼選擇重要的特徵:
use PhpmlFeatureSelectionVarianceThreshold; $selector = new VarianceThreshold(0.8); // 使用方差阈值法选择方差大于0.8的特征 $selector->fit($samples); $selector->transform($samples); // 选择重要的特征
- 建立模型
在進行資料探勘時,需要建立適合的模型。 PHP也提供了一些機器學習函式庫,如php-ml和FANN(Fast Artificial Neural Network Library)。這些函式庫提供了各種常用的機器學習演算法,如分類、迴歸、聚類、神經網路等。
例如,在php-ml中使用樸素貝葉斯演算法時,可以使用以下程式碼建立模型:
use PhpmlClassificationNaiveBayes; $classifier = new NaiveBayes(); $classifier->train($samples, $targets); // 训练模型
- 模型評估
在建立、最佳化和選擇模型時,需要對模型進行評估。常見的模型評估方法包括交叉驗證和ROC曲線等。在PHP中,可以使用以下程式碼評估模型:
use PhpmlClassificationAccuracy; $accuracy = new Accuracy(); $accuracy->score($predicted, $expected); // 返回准确率具体数值
二、機器學習
#機器學習是一種基於資料的自動化方法,透過訓練模型從而實現自主學習和預測。以下介紹如何使用PHP進行機器學習。
- 資料準備
在進行機器學習之前,需要準備資料。一般情況下,我們從原始資料中提取特徵,然後將特徵和標籤進行匹配。在PHP中,我們可以使用以下程式碼讀取並處理資料:
$data = new SplFileObject('data.csv'); $data->setFlags(SplFileObject::READ_CSV); foreach ($data as $row) { $samples[] = array_slice($row, 0, -1); $targets[] = end($row); }
- 模型訓練
在進行機器學習時,需要對模型進行訓練。在PHP中,可以使用以下程式碼對模型進行訓練:
use FANNFANN; $num_input = count($samples[0]); // 特征数目 $num_output = 1; // 标签数目 $num_layers = 3; // 网络层数 $num_neurons_hidden = 4; // 隐藏层神经元数目 $ann = new FANN($num_layers, $num_input, $num_neurons_hidden, $num_output); $ann->train($samples, $targets);
- 模型預測
在機器學習中,我們可以使用訓練好的模型進行預測。在PHP中,可以使用以下程式碼對模型進行預測:
$predicted = array(); foreach ($samples as $sample) { $predicted[] = $ann->run($sample); // 预测结果 }
- 模型評估
在機器學習中,我們需要評估模型的準確率等指標。在PHP中,可以使用以下程式碼對模型進行評估:
use PhpmlMetricAccuracy; $accuracy = new Accuracy(); $accuracy->score($predicted, $targets); // 返回准确率具体数值
綜上所述,PHP在資料探勘和機器學習領域已經逐漸成為一種強大的工具。借助現有的第三方函式庫,我們可以在PHP中快速實現資料探勘和機器學習任務。相信隨著PHP技術的不斷發展和完善,它將在數據領域中扮演越來越重要的角色。
以上是如何使用PHP進行資料探勘和機器學習?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

Atom編輯器mac版下載
最受歡迎的的開源編輯器